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On the  Extrapolation of Band-Limited  Functions 
with Energy Constraints 

WEN YUAN XU AND CHRISTODOULOS CHAMZAS 

Abstruct-A modification of the  algorithm  proposed by  Papoulis  and 
Gerchberg for  extrapolating  band-limited  functions’ is suggested to  
extend  its  applicability over data  corrupted  by noise. We assume that 
energy constraints  are  known  either  for  the  band-limited signal or for 
the noise. 

In  addition,  the  discrete  formulation of the  iterative  algorithm is 
derived, and  the  transition  from  the  continuous  algorithm to its digital 
implementation is presented. 

T 
I. INTRODUCTION 

HE extrapolation  of a band-limited function f ( t )  for  any 
t in terms of a finite segment g(t) of f ( t )  is an essential 

problem in signal  analysis. Various algorithms have been 
proposed for  this problem. All of them  can, essentially, be 
classified in three categories: algorithms based on  analytic 
continuation, algorithms using a series expansion in terms of 
prolate spheroidal functions [l ] , [7] (see Appendix A), and 
iterative algorithms based on successive reduction of the 
mean-squared  error [2] -[SI . However, it is  well known that 
this problem is ill-posed, i.e., its  solution f ( t )  is not  continu- 
ously dependent on g(t) ,  and as Youla [6] says, there exist 
finite energy perturbations  that yield unbounded  error. As a 
result, all the above methods work well  if g( t )  is exactly a 
segment of f ( t )  and there are no errors associated with  their 
numerical implementation. Unfortunately, these requirements 
are almost never satisfied. For  the  solutions based on  the 
prolate spheroidal ,functions  expansion,  there are  available 
various techniques for stabilizing them. All of them make use 
of  additional knowledge about f ( t )  beyond  its band-limited 
character. These constraints are usually referred to as “regular- 
izers” of ill-posed problems. In order to  obtain such a regular- 
ized solution, Slepian [l] assumed that  the energy of the 
unknown signal f ( t )  is given. Viano [7] derived another 
approximating  solution  of f ( t )  by simultaneously imposing 
bounds  on  the energies of the signal f ( t )  and the  data-error. 
Miller [8] has also considered various energy bound regularizers 
in an  abstract Hilbert space formulation. However, all the 
above solutions involved the  computation  and storage of  the 
prolate  spheroidal  functions,  an  extremely difficult numerical 
task.  In  addition,  they are also limited by series truncation 
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‘The band-limited  extrapolation algorithm  was  first  presented by 
A. Papoulis  in  1973  in  an  internal JSTAC report  [2] ; it was  published 
independently  by R. W. Gerchberg  in  1974 [3]  ; the  proof  of  the  con- 
vergence  was  given by A. Papoulis in 1975  [4]. 

errors. Similar results have been presented by Bertero et al. 
[9] and  Rushford et al. [ lo] .  On the iterative algorithm, 
Papoulis [4] suggested the early termination  of the  iteration 
but  the determination  of a terminating  criterion is not available 
yet. Youla [6] investigates this iterative algorithm and  pro- 
vides us with  the necessary and sufficient conditions  for  its 
convergence. 

In  this  work we modify  the iterative algorithm 121, [3] to 
include energy constraints,  connecting in this way the regular- 
ized solutions  obtained in terms of the  prolate spheroidal 
functions,  with  the iterative algorithm. The suggested itera- 
tion  is  stable even in  the presence of  noise and converges into 
a function which is optimum  in minimizing some functionals 
stated in Section 11. Three extrapolating problems with differ- 
ent energy constraints are stated  in  the next  section,  and  their 
solutions in terms of the prolate spheroidal functions are 
presented.  In  Section 111 we provide a simple iterative algorithm 
to  obtain  the  solutions in Section I1 by using only Fourier 
transformations. This iteration was obtained  by a proper 
modification  of the algorithm proposed by Papoulis and 
Gerchberg, and  it invokes a regularization parameter p. Sec- 
tion  IV discusses the numerical evaluation of p.  

Section V is devoted to  the solution  of  the discrete versions 
of the  three  extrapolation  problems  and  an equivalent discrete 
iteration is  also  derived. The  connection  between the  continu- 
ous extrapolation algorithm and its numerical implementation 
is  also  discussed in Section V.  Finally,  the applicability of the 
suggested iteration is illustrated with a numerical example 
presented in  Section VI. 

11. EXTRAPOLATION WITH ENERGY CONSTRAINTS 
To avoid lengthy  formulas we adopt  the usual norm notation, 

denoting  hereafter 

Ilf(t)ll2 = J - lf(t>I2 d t  
.-00 

T 
Ilf(t)Il$ =I lf(t)I2 dt. 

-T 

For simplicity, throughout this work  time  functions shall  be 
assumed to be real, but  the results are valid  also for complex 
functions. 

Let f ( t )  be a o-band-limited function, i.e., 

F ( o ) = O  for Iwl>o 

llf(t)1I2 < O0 
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where F ( o )  is the  Fourier  transform  of f ( t )  and let 

g ( t )  = f ( t )  + n(t> It1 < T. 
We want to estimate f ( t )  in terms  of  its  noisy  segment g(t). 
As we mentioned  in  the  Introduction,  there exist errors n(t)  
with  finite  but  arbitrary small energy that yield  arbitrary large 
errors  on  the  solution f ( t )  at  any  point  outside (- T,T) .  How- 
ever, if additional  information is  given on . f ( t )  beyond  its 
band-limited property,  the  estimation  off(t) can be improved 
and  the ill-posed character  of the problem be removed. In  this 
work, we  will  assume that energy  bounds on f ( t )  and/or n( t )  
are known. Based upon the given additional  information, we 
state  three  different  versions  of  the  extrapolation  problem; 
and  the  optimum  estimator f,(t) of f ( t )  is derived  in  terms  of 
a  prolate  spheroidal series expansion. 

Problem 1: Given that  the energy of f ( t )  is equal to  or 
less than R 2 ,  i.e., 

Ilf(t)1I2 G R 2  ( 2 )  

approximate f ( t )  with f,(t) in F1 such that 

1 1  = Ilf,(t) - g(t)ll+ = 9; Ilf(t) - g(t)l/$ (3) 

where F1 is the family of o-band-limited  functions f ( t )  satisfy- 
ing (2). 

This is the same problem  considered  and solved by Slepian 
et al. [ 1 1  . His solution is the same with  the  one given in 
Theorem 1.  

Problem 2: Given that  the energy  of the noise in ( - T ,  T )  
is equal to or less than E', i.e., Iln(t)ll$ < e 2 ,  find  an f,(t) in 
F2 such that 

Ilf,(t) - g(t)ll$ G E 2  (4) 

1 2  = llf,(t)ll2 = min llf(t)ll2 (5) 
F2 

where F2 is the family  of  o-band-limited functionsf(f) satisfy- 

Problem 3: Given that  the energy of f ( t )  is equal to  or less 
than R 2  and  that  the energy  of n( t )  in ( - T ,   T )  is equal to  or 
less than e 2 ,  find  a  a-band-limited  function f , ( t )  such that 

ing Ilf(t) - g(t)ll+ < 2 .  

Ilf,(t) - g(t)ll+ G E 2  ( 6 )  

Ilf,(t)1I2 G R 2 .  (7) 
Problem 3 has  been  considered also by  Viano [7], but  he 
obtained  an  approximating  solution. Finally, Miller [8] has 
also considered all the above  three cases  in an  abstract  Hilbert 
space and derived  similar solutions using the  method,  of 
eigenfunction  expansion [ l ]  , but  the form  of his solutions 
is different from ours. 

Theorem 1 ; Let 

g( t )= 5 bk@k(t) for It1 < T (8) 
k =  0 

where &(t) are the prolate  spheroidal  functions (see AI) and 
bk defined as  in (A8). Then  a  solution to Problems 1-3 is of 
the  form 

a) For  Problem 1 ,  p = 0 or p = pR > 0 where  pR is the 
solution  of 

b)  For Problem 2, p = - or 0 G p = (u, < - where pe is 
the  solution of 

c) For  Problem 3, 

If p, < p ~ ,  then Problem 3 does not have a  solution: pe and pR 
are the  solutions  ofR(pR) = R~ and ~ ( p ~ )  = E', respectively. 

Proof: 
a)  With f ( t )  a o-band-limited function ( l ) ,  we obtain 

from (A6) 

m 

f(t) = x ak@k(f)- 
k =  0 

Using relations (8), (13), and (A9), we get 

Thus,  Problem 1 is equivalent to determine ak, minimizing I 
under the  constraint 

Using  Lagrangian multipliers we  have the unconstrained  mini- 
mization  of 

Setting 

aH(ak 3 

= 0, 

we obtain 

hkbk 

hk t p  
ak = -. 

Substituting (18) into (14) and (15), we have to determine p 
such that 

and  minimizing 
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The  numerical  evaluation  of the derived optimum  solution 
&(t) presents two difficulties. The first one i s  the use of the 
prolate  spheroidal  functions  and the  other  one is the calcula- 
tion  of  the parameter p from  (21)  and  (22).  These  two 
problems are addressed in Sections 111 and IV. 

. .  
111. THE  ITERATIVE  SOLUTION 

, .  

To avoid the  complexity  associated  with  the  eigenfunctions 
expansion, i.e., storing. @k( t ) ,  evaluation  of hk, etc., we shall 
devise an  iteration to converge into &(t) [see ( 9 ) ] ,  assuming 
that p is  given. 

Let 

fn+ 1 (t> = - .p)fn i t )  + a(g(t) - fn (t)) PT(t)l 

-A+,  -A2 10 
. ..* 

P 

Fig. 1. Sketch o f R ( p )  a n d J ( p ) .  

It  can be shown that since for  any positive p ,  J(-p) > J ( p )  
and R ( - p )  > R ( p ) ,  we need to consider  only p 2 0. Since  for 
p . 2  0, R ( p )  and J ( p )  (Section IV) are,  respectively,monotoni- 
cally decreasing  and  increasing  functions  of p (see Fig. I), we 
have 

where 

and .* denotes  convolution. 
Then,  with 

2 
O<a< - 

1 + u  
where p~ is the positive root  of R ( p )  = R ’. , , 

b)  Following  a  procedure  which is  similar to a), we pt + - lim fn(f> = f,W 
obtain  that  the p for  Problem 2 is 

otherwise 

where pe is the positive root  of J(p )  = e’. 
c)  If f,(t) is a  solution of Problem 3,  then 

J ( P R )  = min Ilf(t) - g(t)ll+ Ilf,(t) - g(t)ll+ 
4 

Proof: Because fn(t) is a-band-limited, 

k= 0 

< e* = J(&), (23) 

because f , ( t )eF1.  Therefore, since J ( p )  is monotonically 
increasing, the  necessary  condition  for the existence  of  a solu- 
tion  to Problem 3 is 

p e  2 p R  * 

It is  easy to find  that  any p in  the  closed interval [ p ~ ,  pel 
will provide us with  an  acceptable f,(t). . . 

The  form  obtained  in (9) is usually  referred to as a “regular- 
ized’’ . solution [ 121 of the original ill-posed extrapolation 
problem  because it is defined for any given segment g ( t )  and 
in  the absence  of noise, i.e., p = 0, &(t) = f ( t ) .  p is called the 
regularization  parameter. 

Also, we would like to comment  on  the  meaning  of p = 00 
for  Problem  2. If Ilg(t)ll$ < e 2 ,  then it is  clear that  the trivial 
solution f,(t) = 0 is the  optimum one  because it is a-band- 
limited, satisfies condition 4, and possesses minimum  energy 
in Fz . 

Substituting fn(t) and f n + l ( t )  from  (25)  and g ( t )  from (8) 
into  (24),  and using (Al) and  (A2), we readily obtain, by 
equating the coefficients of @k (t), 

a k , n + l = [ 1 - a ( / 1 + X k ) l a k , n + a X k b k  I .  (26) 

which is a recursive equation in ak,n with ak,O = 0. Its solu- 
tion is 

Setting 

2  2 
O < a < -  <- 

l + p  h k + p  

we obtain [see (A7)  and  (27)] 

= O  (29) 
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which  results  in 0, (3 1) becomes the  iteration used by Cadzow in [ 131 . Notice 

because for  the a-band-limited  function, fn(t) - f,(t) [ l   1 ,  p. 
1691, 

max 1fn(t) - ~ W I  G f II.M~) - L(~)II. 
T 

This  completes the proof because of  (29). 

Notes 
1 )  The  constant. a is usually  referred to as a  relaxation 

parameter.  It is used to guarantee the convergence of  the,  itera- 
tion. If monotonic convergence', i.e., Ilf,(t)ll> I l f n , - l ( t ) l l ,  is 
desirable, then  the  condition 0 < a G 1/1 t p is sufficient. 
This can be easily obtained  from  (27) because 

llfn(t)11' = lak,nl2 > lak ,n- l  1 
m m 

2 

k =  0 k= 0 

= llfn- 1 (t>l12. 

2) For p =.O ,and = 1  the  iteration in (24)  becomes  the 
Papoulis-Gerchberg  algorithm.  This  iteration converges if 

5 b i < = ,  
k =  0 

which is .equivalent to saying that  the noise n( t )  in (1) is a 
segment of a o-band-limited  function. 

The significance of the parameter p in the  iteration can also 
be described  in  terms  of  integral  equations. 

If  we Jearrange  the  terms  in  (24);  and  make use  of the  fact 
that fn(t) is o-band-limited, we obtain 

T 

Because fn(@ -+f,(t) uniformly  (30),  taking  limits  for n + = 
on both sides of  (3 l), we  have that f,(t) should  satisfy 

' T sin a(t - r )  
dr 

n(t - 7)  

= [; g(7) sin 4 t  - r )  
dr. (32) 

But this is a  Fredholm  integral  equation  of the. second kind, 
and it is  well known [ 121 that  the solution f,(t) of this  equa- 
tion i s  well behaved.  It can be shown also directly  from  (9) 
that f,(t) is the  solution of  (32)  and  then  the algorithm  in  (24) 
can be simply considered as the successive approximation 
solution of (32). 

Depending on  the numerical  implementation  of  the  iterative 
solution, (31) may  be.  a  more  preferable  form  than (24), 
because it avoids the use of  infinite  integrals. If a = 1  and p = 

n(t - 7) 

that in  this case the solution f,(t) satisfies  a  Fredholm  integral 
equation  of  the first kind. 

The following  corollary shows the stability of the iterative 
solution  (24). 2 

Corollary 1 : For  any p > 0 and 0 < a < - 
1 t u  

Proof: From (27) we conclude that 

Ilfn(t>ll' < Ilf,(t)1I2 
and  (34)  results  from  the  fact  that 

,-- 

(34) 

where  for  the  inequalities we  used that 0 < hk < 1  and  for the 
equality  (A9).  Actually, we can also prove that 

IV. ON THE EVALUATION OF p~ AND pe 

The  evaluation  of p~ and p E  is the  second  problem we  have 
to consider.  Relations (10) or (1 1) cannot be used because 
they  require  knowledge  of hk and bk. To avoid this  problem 
we  use the  iteration  to  obtain R ( p )  or J ( p )  for  various values 
of p and then utilize  one  of  the various searching  numerical 
techniques  (for  example,  bisection  or  secant,  etc.) to  find  the 
solution  of (1 1) or  (12). Below we present  some  theorems 
which can be used to speed up  the evaluation  of p~ or pe . 

Lemma '1: Let f,(t, p) denote  the limit  of the  iteration 
(24)  with  a given p ,  then 

we obtain 

Lemma 2: The  functions R ( p )  and J ( p )  for p 2 0 are 
monotonically  decreasing  and  increasing,  respectively. 
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Proof: Taking the derivatives  we can easily show (19), 
(20)  that  for p > 0, 

J’(p)= 2 2 > 
p > O .  

k = o  (hk + PI3 

Theorem 3: The  constants pR and p E  satisfy the following 
bounds: 

(37) 

E 
0 < p e  < if Ilg(t)ll+ > E 2 .  (38) 

Ilg(t>llT - E 

Proof: The positivity of p R  and pe has been proved in 
Theorem  1.  The upper  bound of  (37) is obtained  directly 
from (36) because R ( p R  ) = R 2 .  From (36) we  also obtain, 
assuming p < 00, 

Ilg(t>ll+ - J(P) 
<R(P)  < 2 hkbi - J ( p )  

1 + 21.1 k=O (hk + p 2  
-- 

or 

rn 
P <  

Ilg(t)ll* - m 
and (38) follows because J ( p E )  = e 2 .  

Theorem 3 provides us with  an  initial value po for p e  or p~ . 
Using the  iteration we  can evaluate R ( p 0 )  = Ilf,(t, p0)1l2 or 
J ( p o )  = Ilg(t) - f,(t, po)ll$; and utilizing the  monotonicity  of 
R ( p )  and J (p ) ,  we  can evaluate the  next value pl by using 
various numerical methods  for solving nonlinear equations. 

1 
Theorem 4: With 0 < a < - 

1 + P  

r 1  1 

Proof: From  (27) we obtain 

Using (39) and 0 < hk < 1 we readily obtain 

and  (40) follows from the above and (19). Similarly, we  can 
prove (41) because 

Relation (40) can reduce significantly the number of  calcula- 
tions in Problem 1, because 

if Ilf, (t)l12 > R 2 ,  then p > PR 

and 

Similarly, using (41) we  have for Problem 2 

and 

then p > p E .  (45) 

Finally; (40) and (41) can be used simultaneously to  help  us 
determine an acceptable value of p for Problem 3. 

The  application  of  the above statements will be demonstrated 
in Section VI with a numerical example. 

V. THE DISCRETE PROBLEM 
There  recently  has developed a controversy over whether 

analog algorithms can be digitized, and over the connection 
between the results of a numerical implementation versus the 
analog solution.  For discrete signals the  analyticity  property 
vanishes due  to sampling, and  extrapolated  estimate need not 
coincide with the original one. However, if the energy bounds, 
described in  Section 11, are imposed, the uniqueness of the 
solution is restored  and  the  connection  between  the analog solu- 
tion  and  its discrete digital implementation can  be established. 

In  this section we  will restate  the problems of Section I1 in a 
discrete environment  and rederive their solutions. In  Section 
V-A we  will consider the problem of extrapolating a band- 
limited sequence f [ n ]  for  any n ,  in terms  of a finite set of 
noisy samples. This problem is obtained  when a o-band-limited 
function f ( t )  is sampled with a sampling interval T, < T/U ,  and 
we want  to  estimate  its Fourier  transform in terms of a finite 
set of samples f [ n ]  =f(nT,) lnl G M .  In Section V-B the 
problem of  extrapolating  N-periodic band-limited sequences 
will  be presented and  its  solution  under  the equivalent energy 
constraints will be given.  This situation arises  every time  the 
environment  of a computer is used. Digitization and  roundoff 
errors can be considered as part of our noise term.  Finally, in 
Section V-C the  relation between the analog algorithm and its 
numerical realization is derived. 

Also, we would like to  mention  that  in  addition  to  the 
importance of this section to  the numerical implementation 
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of the analog  algorithm,  there are cases where the problems 
are phrased directly in their discrete form (cases A  and B), i.e., 
we are asked to extrapolate  periodic  functions,  or  trigonomet- 
ric polynomials  in  terms  of  their  samples. 

Prolate  spheroidal  functions  (PSF)  were the basic tool of the 
analog  solution in Section 11. Similarly, the  key  function  for 
the  two discrete problems will be'  the discrete prolate  spheroi- 
dal sequences (DPSS) and  the periodic discrete prolate  sphe- 
roidal sequence (P-DPSS). Their  basic  properties  and definitions 
are stated  in  Appendixes B and C .  For  a  more  detailed descrip- 
tion of  DPSS  see Slepian [ 141 or Papoulis [ 151 , and for 
P-DPSS  see [ 161 and [ 171 . 

Throughout  this  work  the  usual  norm  notation  for  sequences 
is used,  denoting  hereafter 

A.  Extrapolating  Band-Limited  Sequences  with  Energy 
Constraints 

Let f [n] be a  o-band-limited  sequence, i.e., 

m 

F(B) = f [ n ]  ,-Me = 0 n >  1 e p - o  
n=--m 

Ilfbl 1 1 2  < O0 
where F(0)  is the discrete Fourier  transform of f [ n ]  and  let 

g[nl =f[n l  + v [ n ]  InlQM 

be  the given data. We want to estimate f [ n ]  , for all n ,  in 
terms  of  its  noisy  segment g [n] . 

It  should be pointed  out again that in constrast with  the 
continuous case, f [ n ]  cannot be determined  uniquely  from 
g [n] in the absence  of noise. However, imposing the discrete 
version of the  constraints (2),  (3), or (4)  and ( 5 ) ,  the unique- 
ness of  the  solution  can be reestablished, and a theorem 
equivalent to Theorem 1 will  be derived. 

Lemma 3: Let h [m] be known for (ml Q M. Then the 
function f+ [m] satisfying the  conditions 

f + [ m ]  is o-band-limited 

f + [ r n ]  = h[m] Iml QM 

and Ilf'[m]112 = min {Ilf[m]112; f [ m ]  is o-band-limited  and 
f [ m ]  = h [m] Im I G M }  is  given by 

k= 0 

where @k [m] are the DPSS described  in  Appendix B, and 

Proof: Let f [ m ]  be a  o-band-limited  sequence andf[m] = 
h [m] for Iml G M .  Then,  from (B6) 

where @k [ m ] ,  k = 0, 1 ,  * * , 2 M  are the DPSS, but 

[see ( B S ) ]  , thus, 

(47) 

and 

Ilf+[ml 112 G Ilf[ml 1 1 2 .  Q.E.D. 

This result is used also in [17] where f' [m] is referred to as 
the "minimum  norm least square  solution." 

Definition: The linear (2M t 1)-dimensional  subspace  deter- 
mined  by & [m] , k = 0, 1, * * - , 2M, where f$k [m] are the 
(2M t 1) DPSS,  is denoted  by F 3 .  

Using Lemma 3, the space of o-band-limited  sequences  in 
Problems 1-3 can  be  replaced by F 3 .  Then  the uniqueness of 
the  solution  has  been  restored  and all the  proofs in Sections 11- 
IV can easily  be duplicated for the o-band-limited  sequences 
case; and  the equivalent results are obtained  by merely  substi- 
tuting 00 by 2M and f ( t )  by f [ m ]  in Sections 11-IV. For 
example, f, [m] , the equivalent of f , ( t)  in Theorem 1, is 

(49) 

where @k [m] are the DPSS  [see (B l), and bk is defined as in 
( B 8 ) ] .  At this  point,  it should be pointed  out  that  the special 
case of Problem 2 with E = 0 has  been also considered  and 
solved in [ 171 . 

The  equivalent discrete form  of  the iterative solution is 
easily found  to be 

sin am 
Q- 

rrm 
with fo [m] = 0 where Q denotes discrete convolution,  and 

An  easier way to implement (49) [see (3 l ) ]  is 
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because it avoids the  infinite  summation. Similar to (32),  the those in Section V-A. For  example, the equivalent  solution  of 
solutionf, [m] in (49) satisfies the  equation Theorem 1 is 

M sin o(m - I) 
ELf,[mI + & [ I 1  

I=-M n(m - I) 
M sin o(m - I )  

= g [ Z I  
I=-M n(m - 1) 

where q ! ~ ~  [m] are the P-DPSS [see (Cl)] and bi is defined as 
( 5 3 )  in ( ~ 1 2 ) .  

The iterative solution is 
Besides the iterative algorithms  mentioned  above [(50) or 
(52)] , (53)  can  be  solved in  the following  way,  which is  similar f n +  = [(I - aEL)fn [z] + a(g [ E ]  
to  that provided  in [17] and [ 181 for the noiseless  case. 1=l0 

10+N-1 

Denote 
71 

i 1 m=Z 

0 m f l .  71 

First, solve the  (2M t 1) Toeplitz  equations N 

sin - (2K + l)(m - E )  
N 

6 [m - Z ]  = - f n  [I1 )PM P I  1 (58) 

N sin - (m - Z) 
with 

=yg[ml  ImlGM (54) 

and  determine f , [ E ]  for 111 <M. Then  obtain  the  solution 
f, [m] for anfm by  using 

Compare to  the noiseless  case [ 171 , [ 181 , where the  corre- 
sponding  Toeplitz  matrix is 

m,l=-M,*-.,o,.**,M 
which is an  ill-conditioned  matrix  when M is large. In (54), 
however, the ill-conditioned  character  of  the  matrix is improved 
because of the  addition of the  constant 1-1 to  its diagonal 
elements.  This is a  common  technique  for stabilizing an ill- 
conditioned  matrix;  however,  here 1.1 is related to  the imposed 
energy  bounds  on f [m] and/or r) [m] . 

B. Extrapolating Periodic Band-Limited  Sequence  with 
Energy  Constraints 

n 
sin - (2K t l)(m - I) 

N 
- f n  [ I 1  1 

N sin - (m - 1 )  
R 

N 
with 

f o  [ml = 0. 
The  solution f ,  [ m ]  satisfies the  equation 

71 

M 
sin -- (2K t l)(m - I) 

N 
ELf,[mI + f , V I  

I=-M N sin - (m - 1 )  
n 
N 

n 
M 

sin - (2K t l)(m - E )  
N 

= g V I  
I=-M n 

Nsin - (m - E )  
N 

(59) 

Let f [ n ]  be a K-band-limited  N-periodic  sequence, i.e., ii) For  the case K < M ,  see (C14), 
f [ n ]  = f [ n  t N ]  and 

where &[m] are the P-DPSS with  nonzero eigenvalues and  the 
= O  K < m < N - K  (56) term g"= (g[-MI,  * * * , g [ M ] )  is orthogonal to qhi = (&[-MI, 

where F [m] is the discrete Fourier series of  the  N-periodic * ' J 1, = * ' * 7 2K. For the extrapolating  Problem 1 > 

sequence f [n] , and  let the  solution is 

g b l  = f b l  + r )  [nl 1 4  G M  
2K Xibi 

i=o Ai+p 
L[mI - &[ml 

be the given data,  where 2M + 1 < N. We want to estimate the 
N-periodic  sequence f [ n ]  , in  terms  of  its  noisy  segment g [n] . with EL the  solution  of 

Here we should  examine the cases of K > M  and  K < M  
separately. = R 2 .  

i) For  the case K 2 M, all the  statements will  be  similar to 



For  Problem 2 ,  there is no  solution if Ilg"[m] l l ! ~ , ~  > e'. 
When Ilg"[m] l l ! M , M  <e', the  solution is 

for e' > I l i lml  II%I,M. 
Denote  the  solution  of (63)  by pet where 

e' = de2 - ~Ig"[m] II?M,M. 

Substituting pe by per, the assertion which is  similar to c) in 
Theorem 1 can  be  obtained. 

When K <M, (58)  and (59) as  well  as (60) can  also be 
derived assuming that  the  solution exists. 

C. Digital  Implementation of the Analog  Algorithm 

Now  we  will  discuss the  connection between the analog solu- 
tion of the algorithm and  the  solution of its digital implemen- 
tation. Cadzow [13] has also studied  this  problem, but  only 
for  the noiseless  case. 

Let p > 0 and g(t) given for I t i <  T.  If  we sample g(t) with 
a  sampling interval < n/o, we obtain  the discrete data 

g [I] =g(ZTs) l = - M ,  * , M ,   M =  TIT,. . (64) 

Let  us  choose N large enough  such that if 

K = integer [y 71 
then N > 2M t 1 and K > M .  Applying the  iterations  described 
in (58) or (59)  on  the given data.g [ E ] ,  an  N-periodic  sequence 
f,"> Ts(mT,) is obtained satisfying the  equation 

M 
sin -n (2K  + l ) (m  - 1 )  

N 
= g(lT,) 

1 =-M 71 
N sin- (m - I )  

N 
N N 
2 '  ' 2  

m = - -  - -  1. 

For simplicity, N is assumed to be even. 
For  fixed T,, let N tend to infinity.  Since 

if  we define 

otherwise, 

then, for sufficiently large N,EN9 Ts (mT,) is  an approximation 
ofLTs (mT,), which satisfies the  equation 

(68) 
Now let T, tend to zero. Based on  the  theory of approximate 
solution  for  Fredholm integral equation  of  the  second  kind 
[ 191 , f,T. (mT,) will  be an  approximate  solution  of (32)  when 
T,  is sufficiently small. 

In short, choosing  appropriate Ts and N and using iteration 
( 5 8 ) ,  the  solution of (32) can be  derived approximately. 

Let us denote  respectively with R ( i ) ( p )  and d i ) ( p ) ) ,  i = 1 ,2 ,  
3 the R ( p )  and J ( p )  of the  a-band-limited  functions, of the 
T,o-band-limited  sequences,  and  of the  [(N - 1/2) (aT,/n)] - 
band-limited  periodic  sequences. 

Theorem 5 :  

i) lim ~ ( ~ ) ( p )  = ~ ( 2 ) ( p )  (69)  

ii) lim R ( 3 ) ( p )  = R ( ' ) ( p )  (70) 

iii) lim J ( ' ) ( ~ ) T ,  = ~ ( 1 ) ( p )  (71) 

iv)  lim R ( ' ) ( ~ ) T ,  = ~ ( l ) ( p ) .  (72) 

Proof: From (65), it follows that 

N - . .  

N + m  

Ts- 0 

T,+ 0 

71 
sin - (2K t 1)(l - m) sin - (2K t l)(m - n)  

71 

N N 

N sin - ( I  - m )  Nsin - ( m - n )  
n 

I 

71 

N N 

71 
sin - (2K t 1)(l - n )  

* - LN9 T"nT,)l 
N 

N sin ; ( I  - n )  
n 

1 Y  1 V  
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Therefore, 

Furthermore, Lemma 1 still  holds  for the discrete case. Hence, 

Also, using the equation 

we obtain easily that 

Using Lemma 1, it follows that 

Let p$),  p y ) ,  i = 1, 2 ,  3 be the parameters pR and pe, respec- 
tively, for  the  three cases mentioned above. Then, based on 
Theorem 5, we  claim that 

where 

R (PR 1- > 
( l )   ( l )  -R2 J ( I ) ( $ ) )  = E 2  

Therefore, T,  p $ ) / f l  and T,  * ~ 2 ~ ) I f l  are the approxima- 
tions of the parameters p t )  and pL1) when T,  is sufficiently 
small and N is sufficiently large. 

In  conclusion, we have proved that  for N -+ - and T,  -+ 0 the 
solution f,”. Ts(mT,) of the numerical implementation  of the 
extrapolating algorithms will tend towards the analog solution 
f,(t). However, the  important question  of  how large  (small) 
should we choose N ,  ( T , )  has not been addressed here. 

VI. NUMERICAL EXAMPLE 
We illustrate the  method with a numerical example by solving 

Problem 1 for periodic band-limited sequences. The performed 
iteration has the following steps. 

Step 1: Set 

M 
/JL = 0, PU = 2. Ig [ I ]  12/2R2. 

I=-M 

Step 2: Set 

1 
p =  y (PL +Pub 

f o  [ [ I  = 0, 

(Y = 111 t p .  

Step 3 :  Form 

wn[II - ~ ~ 1 f n - 1  [ I 1  +a(g[ I l  -.&-I [ l l ) f “ [ Z I -  

Step 4 :  Take the DFS W ,  [m] of w, [ I ] .  
Step 5: Form 

Step 6 :  Take the inverse DFSf, [Z] of F,  [m] . 
Step 7: Evaluate 

Then, if 

a) R i  > R 2 ,  set pu = p and go to step 2. 

b) R i  < L,, set p L  = p and go to  step 2. 

C) R’(1 - C) < R i ,  stop. 

d) Otherwise, go to step 3. 

In  the example  below, the  computations were carried out 
with a DFS  of size N = 256  and  the various constants were set 
as follows: 

-3 - ~ = 2 0  K = I ~  c=10-5 
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1 
Li 

@) I 4 \ 

I 

Fig. 4. The  extrapolated f,[Z] for (a) p = 0, n = 500.  (b) R 2  = 16.0. 
(c) R 2  = 256/31. (d)R2 = 4.0. 

The data g [I] were obtained  from 

G [ m ]  = iL 31 
(white noise otherwise. 

Fig. 2. G[m] : The DFS of the  data. 

(b) 
Fig. 3. (a) The given datag[Z]  for 111 < 20. (b) The inversef[Z] of  the 

K-band-limited  part of G [m] . 

Fig. 5. The DFS F J m ]  of f,[Z] for (a) 1.1' 0, n = 500. (b) R 2  = 16.0. 
( c ) R 2  = 256/31. ( d ) R 2  = 4.0. 

l o l l . ,  p=0.126 R?=6.268 

P'0.402 R 5 4  

0 
0 128 256 384 5 1 2  

Fig. 6. R i  for various  values of p versus n . 

G [ m ]  is shown  in Fig. 2  and  the given data g [I] in Fig. 3(a). 
The  unknown  inversef[Z]  of  the  K-band-limited  part  of G [ m ]  
is shown in Fig. 3(b).' Its energy is 256/3 1. The  extrapolation 
was performed  for  four  different cases /.A= 0 , R 2  = 16.0, R 2  = 
25613 1, R2 = 4.0. The  results are shown  in Fig. 4, and  their 
Fourier  transforms  in Fig. 5. It  appears that R 2  = 4.0 gives  us 
the  best  solution.  This is because the  solution f, [ E ]  only can 
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24 r 

1 2 r  

Fig. 7. The  functionsR(p) and J ( p )  for  the  presented  example. 

guarantee I l f ,  [Z] - g [I] l l ? ~ , ~  is minimum over the .family of 
K-band-limited N-perio-dic sequences whose energy is equal  to 
or less than R 2 .  This does not imply that I l f , [ Z ]  - f [ I ]  [I:, N -  
is minimum  when R 2  = Ilf[l] l l ~ , N - l .  The case p = 0 is the 
algorithm by Papoulis and Gerchberg. In Fig. 6, R i  is shown 
for  the  four cases. It is  clear that  for p = 0 we  have a diverging 
algorithm.  Finally,  in Fig. 7 the R ( p )  and J ( p )  of the given 
example are plotted as a function of p. We obtain similar 
behavior from  Problems 2 and 3 ,  

VII. CONCLUSION 
The applicability of  the  extrapolating algorithm proposed by 

Papoulis and Gerchberg was extended over noisy data  by reg- 
ularization. This was  achieved by imposing energy constraints 
on  the unknown  band-limited signal or  the noise. The discrete 
versions of the revised algorithm as well  as the  transition  from 
the  continuous algorithm to its digital implementation are 
presented. It is of  interest to notice  that  by overcoming some 
difficulties on mathematics a similar algorithm can be derived 
if  we consider n( t )  to be a stochastic process and seek for 
maximum likelihood solution. This result will be discussed 
in a future work. 

APPENDIX A 

THE  PROLATE  SPHEROIDAL  FUNCTIONS 
In  this Appendix we simply state  the  definition  of  the  pro- 

late spheroidal function  and  the  properties we need for  the 
derivations in this work.  For more details, see [ 13 or [ 1  11 . 

Definition: The  prolate spheroidal functions are the eigen- 
functions @ k ( t )  of  the  equation 

lTT @k(7) Sin o(t - 7) /R( t  - 7) d7 = hk@k(t) .  (Al l  

Properties : 
a) &(t) are o-band-limited, i.e., 

b) &(t) are orthonormal in (-m, -) and orthogonal in 
(- T, T ) ,  i.e., 

c) The eigenvalues h k  are such that 

and lim h k  = 0. 
k - t  m 
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~1 (B 1) 

d) Any o-band-limited functionf(t) can be expressed as 

r m  

and 

e) Any function g ( t )  with 

can be expressed in the interval (- T, T )  as 

and 

APPENDIX B 
THE  DISCRETE  PROLATE SPHEROIDAL SEQUENCES (DPSS) 

Definition: The discrete prolate spheroidal sequences are 
the eigenvectors @k [m] of the  equation 
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Properties : 
a) @k [m]  are o-band-limited, i s . ,  

sin - (2K t l)(m - n)  n 
N 

Nsin - (m - n)  
I di[nl  =hidi[mI 

n =-M 71 

N 
i = O ,  , 2 M  (C 1) 

where 

2 K +  1 <N, 2 M t  1 <N. 

b) d k  [m]  are doubly  orthogonal, i.e., 

i 1 k = l  2 d k [ m l  (h[ml = k f l  
m =-m 

Properties : 
a) The eigenvalues hi are such that 

l > X o  > A l  > * ‘ * > h 2 M > O  if M G K  (C2) 

or 
c) The eigenvalues hk are such that 

1 >ho >x1 > * * * > h z M > O .  

d)  There exist o-band-limited  sequences @ k  [m]  , k = 
2 M t   I , . . . , s u c h t h a t  

k, l=O, l , 2 ; * -  

and  any  o-band-limited  sequence f[m] can be expressed as 
where 

i ,  j = 0, - , min (2K,  2M). (C6) 

c) d j  [m] , i = 0, - , min (2K, 2M) ,  are K-bandlimited, 
i.e., 

k= 0 

zo+ N - l  sin - (2K t l)(m - n )  

n = z o  Nsin - (m - n )  

d)  When M < K ,  there exist K-band-limited  N-periodic 

n 

c N di[nl =di [ml-  (C7) n 
N 

sequences1$i [m] , i=2Mt   1 ;*-* ,2K,suchtha t ’  . 

and 

e) Any  vector (g [ - M I ,  * , g [ M I )  can be expressed as 

and  any  K-band-limited  N-periodic  sequence f [ m ]  can  be 
expressed as 

and 

and 
APPENDIX C 

THE PERIODIC DISCRETE PROLATE SPHEROIDAL 
SEQUENCES (P-DPSS) 

Definition: The  periodic discrete prolate  spheroidal 
sequences are the eigenvectors &[m]  of  the  equation, Le., 

e) When M > K ,  any  K-band-limited  N-periodic  sequence 
f[m] can be expressed as 
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and 

f )  When M <  K ,  any  vector ( g  [-MI , * - * , g [MI ) can be 
expressed as 

and 

g) When M >  K ,  any  vector ( g  [ - M I ,  * * ,g   [MI)  can  be 
expressed as 

g [ m ]  = bi@i[m] +g“[mI ImlGM 
2K 

i= 0 

-f g“[m] &.[m] = o  i = o ;  a ,x 
m =-M 

and 

i= 0 
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