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On the Extrapolation of Band-Limited Functions
with Energy Constraints

WEN YUAN XU anp CHRISTODOULOS CHAMZAS

Abstract— A modification of the algorithm proposed by Papoulis and
Gerchberg for extrapolating band-limited functions! is suggested to
extend its applicability over data corrupted by noise. We assume that
energy constraints are known either for the band-limited signal or for
the noise.

In addition, the discrete formulation of the iterative algorithm is
derived, and the transition from the continuous algorithm to its digital
implementation is presented.

I. INTRODUCTION

HE extrapolation of a band-limited function f(¥) for any

¢t in terms of a finite segment g(7) of f(¢) is an essential
problem in signal analysis. Various algorithms have been
proposed for this problem. All of them can, essentially, be
classified in three categories: algorithms based on analytic
continuation, algorithms using a series expansion in terms of
_prolate spheroidal functions [1], [7] (see Appendix A), and
iterative algorithms based on successive reduction of the
mean-squared error {2]-(5]. However, it is well known that
this problem is ill-posed, i.e., its solution f(z) is not continu-
ously dependent on g(¢), and as Youla [6] says, there exist
finite energy perturbations that yield unbounded error. As a
result, all the above methods work well if g(¢) is exactly a
segment of f(¢) and there are no errors associated with their
numerical implementation. Unfortunately, these requirements
are almost never satisfied. For the solutions based on the
prolate spheroidal functions expansion, there are available
various techniques for stabilizing them. All of them make use
of additional knowledge about f(¢) beyond its band-limited
character. These constraints are usually referred to as “regular-
izers” of ill-posed problems. In order to obtain such a regular-
ized solution, Slepian [1] assumed that the energy of the
unknown signal f(¢) is given. Viano [7] derived another
approximating solution of f(¢) by simultaneously imposing
bounds on the energies of the signal f(¢) and the data-error.
Miller [8] has also considered various energy bound regularizers
in an abstract Hilbert space formulation. However, all the
above solutions involved the computation and storage of the
prolate spheroidal functions, an extremely difficult numerical
task.
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! The band-limited extrapolation algorithm was first presented by
A. Papoulis in 1973 in an internal JSTAC report [2] ; it was published
independently by R. W. Gerchberg in 1974 [3]; the proof of the con-
vergence was given by A. Papoulis in 1975 [4].

In addition, they are also limited by series truncation .

errors. Similar results have been presented by Bertero et al.
[9] and Rushford et /. [10]. On the iterative algorithm,
Papoulis [4] suggested the early termination of the iteration
but the determination of a terminating criterion is not available
yet. Youla [6] investigates this iterative algorithm and pro-
vides us with the necessary and sufficient conditions for its
convergence.

In this work we modify the iterative algorithm [2], [3] to
include energy constraints, connecting in this way the regular-
ized solutions obtained in terms of the prolate spheroidal
functions, with the iterative algorithm. The suggested itera-
tion is stable even in the presence of noise and converges into
a function which is optimum in minimizing some functionals
stated in Section II. Three extrapolating problems with differ-
ent energy constraints are stated in the next section, and their
solutions in terms of the prolate spheroidal functions are
presented. In Section III we provide a simple iterative algorithm
to obtain the solutions in Section Il by using only Fourier
transformations. This iteration was obtained by a proper
modification of the algorithm proposed by Papoulis and
Gerchberg, and it invokes a regularization parameter u. Sec-
tion IV discusses the numerical evaluation of u.

Section V is devoted to the solution of the discrete versions
of the three extrapolation problems and an equivalent discrete
iteration is also derived. The connection between the continu-
ous extrapolation algorithm and its numerical implementation
is also discussed in Section V. Finally, the applicability of the
suggested iteration is illustrated with a numerical example
presented in Section VI.

II. EXTRAPOLATION WITH ENERGY CONSTRAINTS

To avoid lengthy formulas we adopt the usual norm notation,
denoting hereafter

Ir @I = f LA(DI? dt

T
1F @I = f FOR d

-T

For simplicity, throughout this work time functions shall be
assumed to be real, but the results are valid also for complex
functions. :

Let f(¢) be a o-band-limited function, i.e.,

F(w)=0 for

IFOIP <eo

lw| > o

(1
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where F(w) is the Fourier transform of f(t) and let

gy =f@O+n(@) 1tI<T }

We want to estimate f(¢) in terms of its noisy segment g(¢).
As we mentjoned in the Introduction, there exist errors n(f)
with finite but arbitrary small energy that yield arbitrary large
errors on the solution f(¢) at any point outside (- 7,T). How-
ever, if additional information is given on-f(f) beyond its
band-limited property, the estimation of f(¢) can be improved
and the ill-posed character of the problem be removed. In this
work, we will assume that energy bounds on f(¢) and/or n(¢)
are known. Based upon the given additional information, we
state three different versions of the extrapolation problem;
and the optimum estimator f(z) of f(¢) is derived in terms of
a prolate spheroidal series expansion.

Problem 1: G1ven that the energy of f(¢) is equal to or
less than R?, i
NF @I <R2 2)
approxirate f(¢) with £,(¢) in F; such that
I =I4@) - g OIIF = min 17 @) - g@)liF (3)

where F; is the family of o-band-limited functions f(¢) satisfy-.

ing (2).

This is the same problem considered and solved by Slepian
et al. [1]. His solution is the same with the one given in
Theorem 1. '

Problem 2: Given that the energy of the noise in (=7, T)
is equal to or less than €
F', such that

I14G) - @I <€
L= 14O = min IAOIP )

where F, is the family of o-band-limited functions f (¢) satisfy-
ing £ (r) - gIF < €.

Problem 3: Given that the energy of f(z) is equal to or less
than R? and that the energy of n(¢) in (-T, T') is equal to or
less than €2, find a o-band-limited function f,() such that

A0 - gl <& ©)

IA@OIP <R?. Q)
Problem 3 has been. considered also by Viano {[7], but he
obtained an approximating solution. Finally, Miller [8] has
also considered all the above three cases in an abstract Hilbert
space and derived similar solutions using the method, of
eigenfunction expansion [1], but the form of his solutions
is different from ours.

Theorem 1: Let

for |H<T

g(®)= > brdu(®) (®)
k=0
where ¢, (f) are the prolate spheroidal functions (see Al) and
by defined as in (A8). Then a solution to Problems 1-3 is of
~ the form
< Agby

=3

k=0 Agptp

or(2). ®

e, In(@)IF <€?, find an £(r) in

@
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a) For Problem 1, p=0 or pu=ug >0 where ug is the
solution of
o PN .Y
Z — =R?,
k=0 (A +ur)

b) For Problem 2, p=o0 or 0 <=y, <oo where y, is
the solution of

R(ugr) = (10)

YVATHY:

Hu)= 3, ——— =e (11)
) 7:" O\ + pe)?

¢) For Problem 3,

O<ur S (12)

If u, <upg, then Problem 3 does not have a solutlon M and up
are the solutions of R(ug) = R2 and J(ue) = €*, respectively.
Proof:
a) With f(¢) a o-band-limited function (1), we obtain
from (A6)

©o

F@O= 3 adw(®). (13)
k=0
Using relations (8), (13), and (A9), we get
= I70) - 20l = i Nl - @) (14)

Thus, Problem 1 is equivalent to determlne ay, minimizing 7
under the constraint

> @ <R?. (15)
k=0

Using Lagrangian multipliers we have the unconstrained mini-
mization of

Hag,m)= 3> Nr-a) +u ) af. (16) .
k=0 k=0
Setting
0H(a, 1) ‘
——= =0, (17)
aak
we obtain
Arby
ag = (18)
)\k + U

Substituting (18) into (14) and (15), we have to determine g
such that

Rw= 3 2 9)
k=0 (Ag* ”)2
and minimizing
o Aewlbi
Hwy= 3, (20)
ko (At
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R(u)

——

“hgTAhy 10 H

i

Sketch of R(u) andJ ().

Fig. 1.

It can be shown that since for any positive u, J(-u) >J(u)
and R(-p) > R(u), we need to consider only 4> 0. Since for
1= 0, R(p) and J(u) (Section IV) are, respectively, monotoni-
cally decreasing and increasing functions of u (see Fig. 1), we
have

MR >0 ifR2<'Z b
u= : k=0

o - otherwise -

21

where uR is the positive root of R(u) = R2 ,
b) Following a procedure which is similar to a), we
obtam that the u for Problem 2is

pe =0 if € <llg(OliF
= (22)
oo otherw1se
where . is the positive root of J(u) = €2.
¢) If £,(¢) is a solution of Problem 3, then
J(ur)= min 7 () - eOIF <A@ - sOIF
<€ =J(u,), (23)

because f(2)eF;. Therefore, since J(u) is monotonically
increasing, the necessary condition for the existence of a solu-
tion to Problem 3 is

ue>u’R .

It is easy to find that any u.in the closed interval [ug, ]
will provide us with an acceptable £,(¢). - _ :

The form obtained in (9) is usually referred to as a “regular-
ized” -solution [12] of the original ill-posed extrapolation
problem because it is defined for any given segment g(¢) and
in the absence of noise, i.e., u=0, £,() =f (). u is called the
regularization parameter,

Also, we would like to comment on the meaning of y=oe
for Problem 2. If [|g(?)|l% < €2, then it is clear that the trivial
solution £,(¢) =0 is the optimum one because it is o-band-
limited, satisfies condition 4, and possesses minimum energy
inF,.
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The numerical evaluation of the derived optimum solution
f.(1) presents two difficulties. The first one is the use of the
prolate spheroidal functions and the other one is the calcula-
tion of the parameter u from (21) and (22). These two
problems are addressed in Sections III and IV.

IIl. THE ITERATIVE SOLUTION
To avoid the complexity associated with the eigenfunctions
expansion, i.e., storing ¢x(f), evaluation of Ay, etc., we shall
devise an iteration to converge into f,(¢) [see (9)], assuming
that p is given.
Let

Foen(6)= [(1 - ) (1) + a8 - £ (1) Pr()]

sin ot
ES

mt (24)

fo®)=0
where ‘
Pr(t) = 1 i<
0 . |H>T

and # denotes convolution.
Then, with

0<a<—2—~—
1+u

im_ 720 = 0.

Proof: Because f,(¢) is o-band-limited,

(= Z k. n ox (). (25)
k=0 ,

 Substituting £,,(£) and f,+,(¢) from (25) and g(?) from (8)

into (24), and using (Al) and (A2), we readily obtain, by -

equating the coefficients of ¢ (¢),
A, n+1 = [1- a(“+7\k)] [?k,rj fo‘)\kbk (26)

which is a recursive equation in a , with g ¢ =0. Its solu-
tion is

Nebi .
g n = [1-(1-a(A+w)]. 27
>\k + [J
Setting
, 5 _
0<a< < (28)
ltu Nt
we obtain [see (A7) and (27)]
nli_rpm £ @) - LI
Nebe Vo '
= lim ( £ ") (1= (A + )"
n—-> oo k=0 Kk + “
=0 (29)
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which results in

Jim_ £u(6) = £(0) (30)

because for the o-band-limited function, f,(t) - £.(#) [11, p.
169],

0 B
max |£,(0) - £01< Y7 1@ - £O.
This éompletes the proof because of (29).

Notes

1) The constant o« is usually referred to. as a relaxation
parameter. It is used to guarantee the convergence of the itera-
tion. If monotonic convergence, i.e., || f, () > £y (DI, is
desirable, then the condition 0 <a<1/1+yu is sufficient.
This can be easily obtained from (27) because

Z “Zk,nl2 > Z ‘ak,n—l‘
k= : k=0

[ 1 @OIP

2) For u=0 and a=1 the iteration in (24) becomes the
Papoulis-Gerchberg algorithm. This iteration converges if

3 b <o
k=0

which is -equivalent to saying that the noise n(7) in (1) is a
segment of a o-band-limited function.

The significance of the parameter y in the iteration can also
be described in terms of integral equations.

If we rearrange the terms in (24), and make use of the fact
that f,,(¢) is o-band-limited, we obtain

i}

I £ (DI

. T
fre1@ =1 - afu() ta f . (&()

- £(D) M dr.

w(t~ 1)

Because f,(£) - £.() uniformly (30), taking limits for n - oo
on both sides of (31), we have that £,() should satisfy

3D

: rT sino(t-17) -
wos | aew =

T ‘. -
=J‘ £ sino(t-7) .

T ' 7r(z‘— T)

(32)

But this is a Fredholm 1ntegral equatlon of the. second kind,
and it is well known [12] that the solution f,(¢) of this equa-
tion is well behaved. It can be shown also directly from (9)
that £,(¢) is the solution of (32) and then the algorithm in (24)
can be simply considered as the successive approximation
sotution of (32).

Depending on the numerlcal 1mplementat10n of the 1terat1ve
solution, (31) may be. a more preferable form than (24),

because it avoids the use of infinite integrals. If @ =1 and u="
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0, (31) becomes the iteration used by Cadzow in [13]. Notice
that in this case the solution f,(¢) satisfies a Fredholm integral
equation of the first kind.

sina(z- 1)
[

The following corollary shows the stability of the iterative
solution (24).

dr=f(t) te[-T,T). (335

2
Corollary 1: Foranypu>0and 0<a< 1T
u
llg(e )IIT
If@OIP < (34)
Proof: From (27) we conclude that
IfOIF <A@
and (34) results from the fact that _
= NibE w AP}
LD = 32 ———= <
k=0 (A t+p)? kg:o u?
1 = 1
<— 2 MbE=— Hg(f)HT
M k=0

where for the inequalities we used that 0 <Ay <1 and for the
equality (A9). Actually, we can also prove that

IOl
o

IR < (35)

IV. ON THE EVALUATION OF Ui AND '

The evaluation of ug and u, is the second problem we have
to consider. Relations (10) or (11) cannot be used because
they require knowledge of A, and b;. To avoid this problem
we use the iteration to obtain R(u) or J(w) for various values
of u and then utilize one of the various searching numerical
techniques (for example, bisection or secant, etc.) to find the
solution of (11) or (12). Below we present some theorems
which can be used to speed up the evaluation of g or p,.

Lemma 1: Let f(t,u) denote the limit of the iteration
(24) with a given u, then

4G, W+ 20 R(w) + T(w) = g - (36)
Proof: Using relations (1.9) (20), and
b2
e, Wil ,
kgo ()\k + )
we obtain

A2, i)l + 20 R() +T(a1)
= w. ()\3_'_2“)\2 +)\I~l2) b]?
= " S

= O + )
= > NebE =gl Q.ED.

=
]

0

Lemma 2: The functions R(u) and J(u) for =0 are
monotonically decreasing and increasing, respectively.
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Proof: Taking the derivatives we can easily show (19),
(20) that for u >0,

Rw=-2 3 N >0
W= - u
k=0 (A +w?
) o uALDE
Jw=2 Y : u>0.
k=o (Agtw)

Theorem 3: The constants up and u, satisfy the following
bounds:

lg(OiF
2R?

0<up < (37)

0< it llg®lf>e. (38)

He

< -
lle@®lir - e

Proof: The positivity of ug and u. has been proved in
Theorem 1. The upper bound of (37) is obtained directly
from (36) because R(ug)=R?. From (36) we also obtain,
assuming u < e,

g1 - J(w) <
1+2u

_ J(u)
(Mg + p)? @

RW< 3

k=0
or

V()

llgOlly - V(1)

and (38) follows because J( i) = €*.

" Theorem 3 provides us with an initial value go for u, or ug.
Using the iteration we can evaluate R(uo) = lI£(2, po)II* or
J(uo) = llg(t) - £u(t, po)ll%; and utilizing the monotonicity of
R(u) and J(p), we can evaluate the next value y; by using
various numerical methods for solving nonlinear equations.

Theorem 4: With 0 <a< - (39

1+pu

1 \"]?
R(w) [1 - (——)J <O <R(w)
1 1+u

T < fnl6) - £ OB < JCu) [1 + i— (- au)"]z- (a1)

(40)

Proof: From (27) we obtain

Aip2
ﬁ; [1 - (e + )12

Using (39) and 0 <A, <1 we readily obtain

P = 3 (42)
k=0

xlk:: )>z
L ETET

1>(1-(1 —a()\k+u))")?><1—<1 -
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and (40) follows from the above and (19). Similarly, we can
prove (41) because

1@ - @)
= Mbiw?
2 (A + 1)’

k=0
Relation (40) can reduce significantly the number of calcula-
tions in Problem 1, because

>\ 2
(1 L +u))”> - 43)
U

if 15, >R?, then u>ug
and v
. N
if || £ (DI Rz(l' (——> ) . then p<up. (44)
‘ 1+u

Similarly, using (41) we have for Problem 2
if 12 (5) - gOllF <€,

and

then u<p,

if |7, () - gDl > 62(1 + % (I- oA+ u))') ;

then u>p.. (45)

Finally; (40) and (41) can be used simultaneously to help us
determine an acceptable value of y for Problem 3.

The application of the above statements will be demonstrated
in Section VI with a numerical example.

V. THE DISCRETE PROBLEM

There recently has developed a controversy over whether
analog algorithms can be digitized, and over the connection
between the results of a numerical implementation versus the
analog solution. For discrete signals the analyticity property
vanishes due to sampling, and extrapolated estimate need not
coincide with the original one. However, if the energy bounds,
described in Section II, are imposed, the uniqueness of the
solution is restored and the connection between the analog solu-
tion and its discrete digital implementation can be established.

In this section we will restate the problems of Section Il in a
discrete environment and rederive their solutions. In Section
V-A we will consider the problem of extrapolating a band-
limited sequence f[r] for any n, in terms of a finite set of
noisy samples. This problem is obtained when a o-band-limited
function f(¢) is sampled with a sampling interval T, < /o, and
we want to estimate its Fourier transform in terms of a finite
set of samples f[n] =f(nT,) [n|<M. In Section V-B the
problem of extrapolating N-periodic band-limited sequences
will be presented and its solution under the equivalent energy
constraints will be given. This situation arises every time the
environment of a computer is used. Digitization and roundoff
errors can be considered as part of our noise term. Finally, in
Section V-C the relation between the analog algorithm and its

numerical realization is derived.
Also, we would like to mention that in addition to the

importance of this section to the numerical implementation
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of the analog algorithm, there are cases where the problems
are phrased directly in their discrete form (cases A and B), i.e.,
we are asked to extrapolate periodic functions, or trigonomet-
ric polynomials in terms of their samples.

Prolate spheroidal functions (PSF) were the basic tool of the
analog solution in Section II. Similarly, the key function for
the two discrete problems will be the discrete prolate spheroi-
dal sequences (DPSS) and the periodic discrete prolate sphe-
roidal sequence (P-DPSS). Their basic properties and definitions
are stated in AppendixesB and C. For a more detailed descrip-

. tion of DPSS see Slepian [14] or Papoulis {15], and for
P-DPSS see [16] and [17].

Throughout this work the usual norm notation for sequences

is used, denoting hereafter

il =3

n=—c0

£ 112

W nllBen = S0 17T
n=M

A. Extrapolating Band-Limited Sequences with Energy
Constraints

Let f [n] be a o-band-limited sequence, i.e.,

FO)= 3 fln]e™ =0 2>61>0
I [n]1]? <oo

where F(@) is the discrete Fourier transform of f[n] and let
glnl =fln} +nln] Inl<M

be the given data. We want to estimate f[n], for all #, in
terms of its noisy segment g [7].

It should be pointed out again that in constrast with the
continuous case, f[n] cannot be determined uniquely from
g[n] in the absence of noise. However, imposing the discrete
version of the constraints (2), (3), or (4) and (5), the unique-
ness of the solution can be reestablished, and a theorem
equivalent to Theorem 1 will be derived.

remma 3: Let h[m] be known for |m|<
function f* [m] satisfying the conditions

M. Then the

f*[m] is o-band-limited
fflm] =him] |ml<M

and {f*[m]? = min {||f[m]}li?; f[m] is o-band-limited and
flm] = hlm] |m| <M} is given by

2M
friml = 3 apdy [m] (46)

k=0

where @y [m] are the DPSS described in Appendix B, and

Z him] ey lm].

>\k m=-M
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Proof: Let f[m] be a o-band-limited sequence and f[m] =
k[m] for |m| <M. Then, from (B6)

oo

flm] = > axpr(m]
k=0
M o
=3 apml+ 3 apgilm]
k=0 k=2M+1
=f*[m] + f1[m] 47)
where ¢ {m],k=0,1,---,2M are the DPSS, but
fi[m] = for |m|<M
[see.(B8)], thus,
flml =f*[m] Imi<M (48)
and )
f*[m]IP < f[mll?. Q.ED.

This result is used also in [17] where f* [m] is referred to as
the “minimum norm least square solution.”

Definition: The linear (2M + 1) dimensional subspace deter-
mined by ¢y [m], k=0, 1,---, 2M, where qbk [m] are the
(2M + 1) DPSS, is denoted by F3

Using Lemma 3, the space of o-band-limited sequences in
Problems 1-3 can be replaced by F5. Then the uniqueness of
the solution has been restored and all the proofs in Sections II-
IV can easily be duplicated for the o-band-limited sequences
case; and the equivalent results are obtained by merely substi-
tutingoe by 2M and f(¢) by f[m] in Sections II-IV. For
example, f, [m], the equivalent of £,(¢) in Theorem 1, is

2M
filml = 3°
k=0 7\k
where ¢y [m] are the DPSS [see (B1), and by is defined as in
(B8)]. At this point, it should be pointed out that the special
case of Problem 2 with e =0 has been also considered and
solved in [17].

The equivalent discrete form of the iterative solutlon is
easily found to be

foer[m] = [(1 - aw)fy[m] + alg[m] -~ fr[m]) Py [m]]

¢k [m] (49)

sin om
* (50)
mm
with f [m] = 0 where * denotes discrete convolution, and
0 Iml>M
Py[m] = (51)
1 |ml<M.

An easier way to implement (49) [see (31)] is

fn+1 [m] = (1 - a“)fn[m]

M
to

I=-M

no(m-1)
(gl] - 1D _‘——)“ (52)

(m -1
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because it avoids the infinite summation. Similar to (32), the
solution £ [m] in (49) satisfies the equation

sin o(m ~ 1)

uilml v 34 = =T

1=—M

M
> gl

1=-M

sin o(m ~ 1)

wlm - 1)

(53)

Besides the iterative algorithms mentioned above [(50) or

(52)], (53) can be solved in the following way, which is similar

to that provided in [17] and [18] for the noiseless case.
Denote

m=1
mFl.
First, solve the (2M + 1) Toeplitz equations

1
§[m-1] = %0

sina(m - 1)

3 - £0]
> 1) ] lg A

1=-M

l:uﬁ [m-1]+

=uglm] |ml<M (54)

and determine f,[/] for |/|<M. Then obtain the solution
f.[m] for any'm by using
no(m-1)

SRS
> e Ll D

=M
Compare to the noiseless case {17], [18], where the corre-
sponding Toeplitz matrix is '

[sin o(m - l)]
n(m—l) ml==M, 0, ++ , M

* which is an ill-conditioned matrix when M is large. In (54),
however, the ill-conditioned character of the matrix is improved
because of the addition of the constant p to its diagonal
elements. This is a common technique for stabilizing an ill-
conditioned matrix; however, here y is related to the imposed
energy bounds on f[m] and/or 1 [m].

1
film] = M (55) |

B. Extrapolating Periodic Band-Limited Sequence with
Energy Constraints

Let f[n] be a K-band-limited N-periodic sequence, i.e.,
fln] =f[n +N] and

1 N-1
Fm] N X_: fIn] exp (-j2nmn/N)

=0 K<m<N-K (56)

where F[m] is the discrete Fourier series of the N-periodic
sequence f[n], and let

gln] =fln] +n[n]

be the given data, where 2M + 1 </N. We want to estimate the
N-periodic sequence f[n], in terms of its noisy segment g [r] .
Here we should examine the cases of K>=M and K<M
separately.
i} For the case K 2 M, all the statements will be similar to

In|<M
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those in Section V-A. For example, the equivalent solution of
Theorem 1 is

\bi
¢;lm]

(57
Nty )

M
Llm}= %
i=0

where ¢;[m] are the P-DPSS [see (C1)] and b; is defined as
in (C12).
The iterative solution is

10+N*1

2

l=lo

fnsr[m] = [(1 - au)fu ] + g []

sin % (2K + D)m - 1)

~f )Py li] (58)
N sin — (m-1)
N
with

fo[m] =0

fuosln] = (1 - andfylm] v 3 (g1

sin —]717 (2K + 1)(m - 1)

- fall]) (59)
N sin —;{,— (m-~1)
with
fo[m] =0.

The solution £, [m] satisfies the equation

sin —j’{/— (K + 1)m - 1)

el + 55 £l _
=M Nsin% (m-1)

s
LW + Do -
sin — QK+1)(m-1)

= > gzl

1=-M

(60)
N sin % (m-1)

if) For the case K <M, see (C14),

2K
glml = . bolm] +&lm]  |ml<M (61)
i=o
where ¢;[m] are the P-DPSS with nonzero eigenvalues and the
term g=(g[-M],- - ,g[M]) is orthogonal to ¢; = (¢;[-M],
-, ¢;[M]),i=0,---,2K. For the extrapolating Problem 1,
the solution is

2K A
film] = FZ:,) ts ¢;[m]
with u the solution of
_ 2K \ip} o,
RO= 2 v F
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For Problem 2, there is no solution if |[m]|[%, 1 > €*.
When [|g[m] |7, < €2, the solution is
Aib;
— ¢;[m]
)\i +u -

film] = ZVI_E (62)

where p = o0 if €2 = {|g[m]||%4, ar or u satisfies the equation
Aiu?bf
(N +w)?

k’ for € > |Ig[m]12, m-

2K
Jwe s

i=0

=e? - || glm]2n, m

(63)
Denote the solution of (63) by u.’ where

¢ =vVe? - lgm]|Pas, n -

Substituting u, by .’, the assertion which is similar to c) in
Theorem 1 can be obtained.

When K <M, (58) and (59) as well as (60) can also be
derived assuming that the solution exists.

C. Digital Implementation of the Analog Algorithm

Now we will discuss the connection between the analog solu-
tion of the algorithm and the solution of its digital implemen-
tation. Cadzow [13] has also studied this problem, but only
for the noiseless case.

Let u>0 and g(¢) given for |¢| < T. If we sample g(¢) with
a sampling interval 7 < m/0, we obtain the discrete data

gl =&(Ty)

Let us choose N large enough such that if

ol
77
then N >2M + 1 and K > M. Applying the iterations described

in (58) or (59) on the given data g [/}, an N-periodic sequence
£ Ts(mT,) is obtained satisfying the equation

I=-M,--+ .M, M=T/T, (64)

Ww-1
K = integer

sin 7’:,— QK+ 1)m - 1)

wiN T T+ S RN TaT)

1=-M Nsi I -1
sin — (m-1)

sin 775,— (2K + 1)Ym - 1)

Nsin% (m-1)
(65)

For simplicity, / is assumed to be even.
For fixed T, let N tend to infinity. Since

,oom
sin N(2K +1)m-1) sin oT,(m - 1)

T T am-n (66)
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if we define
N N
_ BTy m=,, 5 -1 (67)
£ Ts (mT) = 2 2
0 otherwise,

then, for sufficiently large &, £,V T (mT;) is an approximation
of £Is (mT;), which satisfies the equation

sin 0Ty (m - 1)
Ln(m-1)
sin 0Tz (m - 1)

Ty w(m ~ l)‘

wilmn)+ S )

I=-M

M
= > (L)

L Iml=0,1,--

(68)

Now let T; tend to zero. Based on the theory of approximate
solution for Fredholm integral equation of the second kind
[19], £%s (mT;) will be an approximate solution of (32) when
T; is sufficiently small.

In short, choosing appropriate T, and N and using iteration
(58), the solution of (32) can be derived approximately.

Let us denote respectively withR(i)(u) and JU )(u), i=1,2,
3 the R(u) and J(u) of the o-band-limited functions, of the
T,o-band-limited sequences, and of the {(¥ ~ 1/2) (0T3/m)]-
band-limited periodic sequences.

Theorem 5:

i Jim JO(w) =D (w) (69)

i) Nlim R®(u) =R () (70)

i) _lim J® ()T, =7 () (71)
Ty— 0

iv) lim R®(wT; = RO(w). (72)
=0

Proof: From (65), it follows that
(N[2)-1
RO = TR
m=—(N/2)
1 -1 M M
== > >
MY m=S(Nj2) 1=-M n=-M

eT) - £¥Ban)] [e(im) - £ T (nT;)

| sin ;7 (2K +1)( - m) sin ]% (2K + 1)(m - )

Nsin]%(lim) Nsinj%(m—n)

1 M M N T
= EM _ZM [T - £V (T

sin %— QRK+D)(i-n

e - £ ()
Nsin — (- n)
N
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Therefore,
M M T
lim RO(w=— Z > (8T - £50T))
N~ e ¥ Sy

sin oT;(I ~ n)
w(l - n)
Furthermore, Lemma 1 still holds for the discrete case. Hence,

TONw) - TO(W) = LB AT, 11

- N2 AT a, 51 + 20RP () - 2uREN(w).
It is easy to find from (73) and (70) that

- [g(Ty) - £Ts(nTy)] = R®(p).

(73)

Jim 79w =7 D ().
Also, using the equation

R<2>(u)7;—— z z [g(T) - £5(T)]

I==M n=-M
sino (I - n)

. - ¢Ts
ls(uTy) - £ —

we obtain easily that
1 T T

Jim, Rm(u)ﬂ=;7 f_T f_T (60~ £(2)]

no(t- 1)

-7

- [g(m) - A(D] dr dr = R(p).

Using Lemma 1, it follows that

T M
T - 7MW = f ILOPde- 3 BRI 5L
-7 1=-M
M
+2uRM(p) - 2uRD(W T+ > 1gU)I* T,
1=-M

T
- tsr (74)
-7
Thus, we conclude that
Tlim IO T, =IO, Q.ED.
=0

Let ul(é), u( ) i= 1, 2, 3 be the parameters u, and y_, respec-
tively, for the three cases mentioned above. Then, based on
Theorem 5, we claim that

D dim wl)m =kl (75)
i) lim w7 =i (76)
i) fim 7 N T (77)
v lim 7 w3 =uld
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where

ROWE) ) =RT, IO ) = T,

RO ) =RT,  TPWE) 7)) =T,

RO(uh=r?,

Therefore, T; ug)/ VT and ( )/\/_ are the approxima-
tions of the parameters pR and u when T; is sufficiently
small and & is sufficiently large.

In conclusion, we have proved that for N e and T; - 0 the
solution £ Is(mT;) of the numerical implementation of the
extrapolating algorithms will tend towards the analog solution
f(f). However, the important question of how large (small)
should we choose N, (T;) has not been addressed here.

J(l)(ﬂgl)) =2,

VI

We illustrate the method with a numerical example by solving
Problem 1 for periodic band-limited sequences. The performed
iteration has the following steps.

Step 1: Set

NuMERICAL EXAMPLE

M
L =0,pp= 3 lgll*/2R?.

1=—M
Step 2. Set -
1
H=z (ug *uy)s

foll] ='0,

a=1/1+pu.
Step 3. Form
walll =(1 - aw)fu-s ] +a(gll] - fro-1 UD Py ]
Step 4. Take the DFS W, [m] of w,[1].
Step 5: Form
W,[m] |ml<K
Fplm] =
0 |m|>K.

Step 6: Take the inverse DFS f,, [I] of F,,[m].
Step 7: Evaluate

R:="S" IfulllP Ly=

=0

Then, if

[1-(+my"]? R,

a) R2 > R?, set uy = uand go to step 2.
b) R: <L, set uy, = wand go to step 2
¢) R*(1- C)<R?
d) Otherwise, go to step 3.

, stop.

In the example below, the computations were carried out
with a DFS of size V= 256 and the various constants were set
as follows:

M=20 K=15 (C=107%,
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Fig. 2. G[m]: The DFS of the data.

(a)

At FAWF-N
MV A

®)
Fig. 3. (a) The given datag{l] for |I| < 20. (b) The inverse f[/] of the
K -band-limited part of G[m].

K

(a)

© /|
O oo

~- NS

Fig. 4. The extrapolated f,[I] for (a) u =0, n=500. (b) R?=16.0.
(c) R? = 256/31. (d) R? = 4.0.

The data g [/] were obtained from

1
: — Im| <K
white noise  otherwise.
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(a)

My M

© M _
A

@

Fig. 5. The DFS F,[m] of £,[1] for (a) u="0,n = 500. (b) R? = 16.0.
(c) R? = 256/31. (d)R? = 4.0.

An2

40

3ol

20

#:0.0268 RZ.18

10 #°0.126 R2:8.258.
#=0.492 RZ:4
0 1 sl 1 |
0 128 256 384 512

Fig. 6. RZ for various values of u versus n.

G[m] is showr in Fig. 2 and the given data g[] in Fig. 3(a).
The unknown inverse f[/] of the K -band-limited part of G [m]
is shown in Fig. 3(b). Its energy is 256/31. The extrapolation
was performed for four different cases u=0,R% =16.0,R? =
256/31, R* =4.0. The results are shown in Fig. 4, and their
Fourier transforms in Fig. 5. It appears that R? = 4.0 gives us
the best solution. This is because the solution £, [/] only can
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24

18 -

rery (a)

R(u) 12}

(b)

) 6

ot
0

. P P . B
Fig. 7. The functions R(u) and J(u) for the presented example.

guarantee ||£,[7} - g[11l%sr,»r is minimum over the family of
K-band-limited N-periodic sequences whose energy is equal to
or less than R%. This does not imply that [|£,[Z] - F[71I3, x-1
is minimum when R? = |[f[/]|l3 x-;. The case u=0 is the
algorithm by Papoulis and Gerchberg. In Fig. 6, R3 is shown
for the four cases. It is clear that for u =0 we have a diverging
algorithm. Finally, in Fig. 7 the R(u) and J(u) of the given
example are plotted as a function of u. We obtain similar
behavior from Problems 2 and 3.

. VII. CoNcLUSION

The applicability of the extrapolating algorithm proposed by
Papoulis and Gerchberg was extended over noisy data by reg-
ularization. This was achieved by imposing energy constraints
on the unknown band-limited signal or the noise. The discrete
versions of the revised algorithm as well as the transition from
the continuous algorithm to its digital implementation are
presented. It is of interest to notice that by overcoming some
difficulties on mathematics a similar algorithm can be derived
if we consider n(f) to be a stochastic process and seek for
maximum likelihood solution. This result will be discussed
in a future work.

APPENDIX A

THE PROLATE SPHEROIDAL FUNCTIONS

In this Appendix we simply state the definition of the pro-
late spheroidal function and the properties we need for the
derivations in this work., For more details, see [1] or [11].

Definition: The prolate spheroidal functions are the eigen-
functions ¢y (7) of the equation

T
f ¢k(r) sin (¢ - 7)/w(t - 7) dr = NP (). (A1)
-T
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Properties:
a) ¢y (¢) are g-band-limited, i.e.,

3
Sin o - ¢k (Z‘)

wt (A2)

Or(2) =

b) ¢x(¢) are orthonormal in (-0, %) and orthogonal in
(-T,T),ie.,

= - 1 k=1
i (1) ¢1(1) dt = 3 - A3
L A 0 k#l (43
[ aveiora %hk ! (ad)
I3 f)dr =
e 0 K+l
¢) The eigénvalues Ak are such that
I>Ng >N > >N > >0
and klim A =0. (A5)

d) Any o-band-limited function f(?) can be expressed as

@)= i a i (2)

k=0

a= | ros0a (A6)

and |

IFoIP = > at. (A7)
k=0

¢) Any function g(¢) with

T
G =fT

can be expressed in the interval (-T,T) as

lg(t)? dt <eo

g)= i brop(t)  ltI<T

k=0

1 (T |
by | s0woa (A8)

and

le@IF= 2° Nbi. (A9)
k=0
APPENDIX B
THE DISCRETE PROLATE SPHEROIDAL SEQUENCES (DPSS)

Definition: The discrete prolate spheroidal sequences are
the eigenvectors ¢y [m] of the equation
M sino(m - n)

S 7] = N b [m]

n=-M ﬁ(m—n)

k=0, ,2M. (B1)
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Properties: .
. . sin — 2K+ 1)(m - n)
a) @y [m] are o-band-limited, i.e., M N .
) ol | 5 ————— il = Ail]
. =M .
b 1] » sinom  _ o [m] (B2) n=- N sin N (m-n)
b) ¢y [m] are doubly orthogonal, i.e., i=0,---,2M (€1
' o where
> delml ¢(m] = (B3)  2K+1<N, 2M+1<N.
iy k#1
. ‘ Properties:
e k=1 a) The eigenvalues A; are such that
Z ox [m] ¢;[m] = (B4) .
T k#1. 12NN =2 >0 if M<K (C2)
9) The eigenvalues A are such that or
1})\0 >7\1 >"'>)\2K>)\2K+1 ="'=}\2M=0
1>)\0>7\1>"'>>\2M>0. ‘ S
: » fM>K. (C3)
d) There exist o-band-limited sequences ¢y [m], k= ' ,
IM+1,- -+ suchthat b) ¢;[m] are doubly erthogonal, ie.,
L k=l S amlgmi=] ) (c4)
o o K= ¢;Im| ¢;lm] = 4
or [m] ¢;[m] = - 0 i#j
mz:_xk]'l[] 0 k£l m=ly 17]
M N i=]
k,1=0,1,2,+-- Y #im] ¢lm] = o (Cs)
m=-M 0 iFj .
and any c-band-limited sequence f[m] can be expressed as where i
f[m] = Z ak¢k [m] i,j=0,' ++, min (2K,2M) ) (C6)
k=0 ¢) ¢;[m],i=0,---,min (2K, 2M), are K-band-limited,
o . ie., :
= > flm] ¢ lm] (B6)
T o1 Sin o QK+ (m-n)
and ’ Z 1r ¢l [i’l] ¢1 [m] (C7)
- n=lo N sin ¥ (m-n)
IFfm]I? = 3 a. (B7)
k=0 d) When M <X, there exist K-band-limited N-periodic
e) Any vector (g[-M], -+ ,g[M]) can be expressed as sequences ¢; [m],1=2M+ 1, -, 2K, such that
o ' , lo+N-1 1 i=j
glml = 3 bty lm]  Iml<M 2 % [m] ¢;m] =
k=0 m= lo l.;éj
M
by = __1._ S glmléxlm]  k=0,7--,2M (BS) and any K-band-limited Npenodlc sequence fm] can be
M m—m ' expressed as
and 2K
flml = 3 a;¢;[m]
2 2M 2 : i=0
g mllZa, = 3 Nibk. (B9) :
: k=0 : lg+N-1
It is clear that if g[m] =f[m] for \m|<M, by =a; for k= 4= mz;, f[.m] 9: [m] €8)
0o -
0,1,---,2M.
and
ApPENDIX C 2K :
THE PERIODIC DISCRETE PROLATE SPHEROIDAL WFEmlE), 1g+ n-1 = Z a2, (C9)
SEQUENCES (P-DPSS) ‘ i
 Definition: The periodic discrete prolate spheroidal e) When M > K, any K -band-limited V-periodic sequence

sequences are the eigenvectors ¢;[m] of the equation, ie., flm] can be expressed as



1234

2K
> a;¢;(m]

i=0

flm]

“lg+N-1

a;= 3 flm] ¢:lm]

m=lo

(C10)

and

W im] 1y, 1+ -1 = (C11)

2K
> a}.
i=o

f) When M<K, any Vector (g[-M],-
expressed as

-,2[M]) can be

M
glml= % bi¢s[m] |Iml<M
i=o
M
bi=r > glm] ¢;lm] (C12)
i m=-M
and
g [m] s, a1 = Z Ab7E . (C13)

i=0

g) When M > K, any vector (g[-M},- -
expressed as

,g[M]) can be

eiml = 3 bigyim] +5m]  Iml<M

i=0

f glm) ¢;fm] =0 i=0,--+,2K (C14)

1 M
b=y 32 glmlelnl (C15)
i m=-M

and

2K
lgmI s, ae= 3. N} +11g[m]ll-ar, 1 - (C1e6)

i=0
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