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TABLE I1 
RESULTS OF AUALYTICAL AND EXPERIMENTAL €0 DETERMINATION 

2 = 10 Analytical Experimental 
(A, B )  €0, dB €0, dB 

(0.95,0.70) -3.84  -3.77 
(0.70,  0.95) -2.08  -1.80 
(0.95, 0.90) -0.93  -1.01 
(0.90,  0.95) -0.5 1 -0.63 

analytical  techniques  developed.  In  practice,  one  may  not 
have  an  absolute  knowledge  of  the  data  statistical  parameters. 
However,  a  good  knowledge  of  statistical  bounds  may  be 
known a priori. In  this  case,  a  range  of 010 values  may  be 
obtained  (along  with a range of expected ASE reductions,   the 
eo) from  which  a  representative 0 1 ~  might  be  selected.  It 
should  be  noted  from  the  results in Table I that   even  though 
statistical  parameters  may  vary  widely,  the  corresponding 0 1 ~  
may  not   vary in an  extreme  manner .   This  is  illustrated  by  the 
two  cases  in  Table I ,  ( A ,  B )  = (0.95, 0.70) and ( A ,  B )  ~ ( 0 . 7 0 ,  
0.95) which  have  drastically  differing  correlation  properties, 
but  have a. of  4( and 2( respectively. 

Iv. SUMMARY  AND  CONCLUSION 

This  paper  has  presented  a  method  for  analytically  deriving 
ao, the   op t imum LMS gain  parameter for use  with  a  visual 
fidelity  criterion  for  image  source  coding. This paper  has 
shown  that  if one  has  knowledge  of  image  correlation  param- 
eters  then a0 may  be  calculated  directly.  If  one  only  has 
knowledge  of  an  expected  range of input  statistical  parameters, 
then  one  may  correspondingly  calculate  a  range  of  which 
will  provide  near  minimum ASE. 
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An Improved  Version of Papoulis-Gerchberg  Algorithm 
on Band-Limited Extrapolation 

CHRISTODOULOS C. CHAMZAS A N D  WEN Y U A N  XU 

Abstruct-An iterative  algorithm  for  extrapolating  analog  band-limited 
signals has  been  proposed  by  Papoulis  and Gerchberg.’ By inserting a 
multiplication by a  constant in the  above  algorithm,  chosen to mini- 
mize the energy of the  error in the  extrapolation  interval,  aconsiderable 
speed  up of its convergence has  been achieved. 

I. INTRODUCTION 
A central  problem  in  Fourier  analysis  and  spectral  estimation 

is the  determination  of  the  transform 

l o  E 2  = - 2n 1, IF(o)I2 d w  < 

and 

1 1 IwI < o  
/’,(a) = 

0 otherwise, 
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‘The band-limited  extrapolation  algorithm was first presented by  A. 
Papoulis in 1973 in 121 : i t  was  published independently by R. W.<krch- 
berg in  1974 [ 3 ]  : the  proof o f  the convcrgcnce was given  by A. Papoulis 
in 1975 141. 
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then  i t   is   well   known  that f(t) is  analytic  in  the  entire  t-axis 
[ 11,  and  therefore,  in  principle, f’(t) can  be  recovered  from  its 
segment fr(t). However,  extrapolating f r ( t )  by  using  Taylor 
series  expansion  is  impractical  because  derivative is a  noise 
sensitive  operation.  In [ 21 -[ 51 , an  algorithm  was  developed, 
where  the  segment f r ( t )  is extrapolated  iteratively  over the 
entire  t-axis.  Although  the  suggested  algorithm  is  less  sensitive 
to  noise,  noise is still  a  major  problem  and  the  iteration  is 
diverging  when  the  given  segment  is  contaminated  with  non- 
band-limited  noise.  Papoulis  [4]  has  suggested  for  solution 
its  early  termination,  but  the  determination  of  a  termination 
criterion is not  available  yet. A different  approach is used  in 
[9]  where  the  problem  of  extrapolating  noisy  data is  solved 
by  assuming  that  energy  constraints  are  known  either  for  the 
band-limited  signal  or  for  the  noise. 

Another  problem  associated  with  iterative  algorithms is t he  
speed  of  convergence.  In  the  present  work  we  consider  only 
the  second  problem  and  we  propose  a  simple  modification  of 
the  original  algorithm,  which  speeds  up  considerably  its 
convergence. 

In the  original  algorithm,  at   the  nth  i teration  step,  f ( t )  is 
approximated  by 

rithms,  have  been  already  reported  in  a  detailed  treatment  by 
Jain  and  Ranganath,  [ 6 ] ,  where  also  the  question of unique- 
ness  was  considered. 

We want  to  emphasize,  that  by  discrete  version,  we  do  not 
mean  the  numerical  implementation of the  continuous  algo- 
rithm.  The  problems  related  with  the  numerical  implementa- 
tion will not  be  considered  in  this  work.  The  problem  has 
been  examined  in [ 91. 

11. EVALUATION Or; A ,  
We shall  use  relation ( 5 )  to  derive A,. Similar  results  are 

obtained  if (6) is used  and  they  are  given  at  the  end  of  this 
section. 

Theorem I :  

with 

with 

where 

In  the  proposed  modified  version,  the  nth  iteration  step 
becomes 

Proof: From (6), using  the  orthogonality  principle,  we 
obtain 

where 

(10)  

and (7) follows. 
Since f(t) is given  for It/ < T and J,(t) is known in  each 

iteration  step, W n  and Y ,  can  be  evaluated  directly.  For  the 
evaluation  of X , ,  we  have to  prove  the  recursive  relation (9). 
In the  following  steps  we will assume f ( f )  to be  real,  however 
the  result is  valid  even if .f’(t) is complex [ 7 ]  . 

From  (4),  we  have 

with 

f o  ( t )  = 0 
The  constant A, is  chosen to  minimize  the  energy of the 

error, I n ,  in the  nth  i teration  step.   The  definit ion of I ,  de- 
pends  on  what  we  consider  as  the  end  of  the  nth  step. If 
f , ( t )  is the  nth  approximation of f ( t ) ,  then 

In = 1: I f ( t ) -  ~ p ~ . f n ( t ) 1 2  ( 1  - P T ( ~ ) )  d t .  (6) 

The  use  of  the  above  technique  to  the  discrete  version of the 
algorithm,  Le.,  extrapolating  o-band-limited  sequences  or  peri- 
odic  band-limited  sequences,  is  easy  and will not  be  described 
here.  The  formulas  for  the  evaluation of A, are  obtained  by 
simply  replacing  integrations  by  summations  and  the  proof  of 
convergence is simpler.  Similar  results  for  the  discrete  algo- 

* ( * )  denotes convolu t ion .  

sin u(t  - 7) 
n(t  - T )  

d r   d t  

But f ( t )  is o-band-limited  and 
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(12)  

- [; f T  ( t )  f n -  1 ( T I d 7  1 
= X 1  + A,-l(X,-l - Y,-& Q.E.D. 

Thus,  X ,  and A ,  can  be  evaluated  recursively  in  each  step. 
N o t e :  If  relation (6) is used,  then 

where X, and Y ,  are  given  in ( 8 ) ,  and 

2, =J Ifn(t)12 dt .  

Itl>T 

segment & ( t ) P T ( t ) ,  instead  of  the  infinite  many  needed  in 
part a ) .  

111. CONVERGENCE 
In  this  section,  we  consider  the  question  of  convergence. We 

can  prove  that 

where 

We can  also  prove  the  following  more  general  theorem  on 
convergence. 

Theorem 2: Let f ( t )  be  a  u-band-limited  function (2),  and  
let 

where A ,  is a  positive  sequence  of  numbers.  Then 

if and  only if 

lim A ,  = 1  and  lim I l f , l l  = I l f l l .  
n+-  n-'- 

The  proofs  are  not  presented,  due to space  limitations.  How- 
ever,  they  are  available  upon  request. 

Convergence  can  also  be  proved if A ,  is  defined  by  minimiz- 
ing I ,  in (6) instead  of (5).  Moreover,  it  is  easy to generalize 
[ 7 1 the  above  method  for  signals  which  are  bandpass  limited 
and  either  one  or  more  segments  are  known  anywhere  over  the 
t axis. 

To avoid  the  difficulties  associated  with  the  infinite  limits of 
integration  in  the  Fourier  integral,  we  can  use  a  form  for  the 
iteration  similar  to  the  one  suggested  by  Cadzow [ 81 , i.e., 

To  illustrate  the  significance  of  the  constant,  we  present  a 
simple  example. 

Example:  Let us assume  that   the  unknown  function is 

f ( t )  = @ k ( t )  

where &(t )  is one  of  the  prolate  spheroidal  functions  (see [ 1, 
p .  205 I ) .  

a )  If the  original  iteration ( A ,  = l ) ,  is applied,   then, as it 
has  been  shown  in [ 4 ]  

f , ( t ) =  [ l -  (1  - h,YI & ( t )  O < X k  < 1 

f l ( t )  = X k $ k ( t ) ,  x1 = h k  WI  = hi n 1 = I/h, 

b )  If A ,  is  used,  then  from (4) and (7) we  obtain  that  

and 

It1 T 
IV. CONCLUSION 

A steepest  descent  technique  has  been  used  to  speed  con- 
siderably  the  convergence  of  the  Papoulis-Gerchberg  algorithm 

Hence,  we  need only one iteration  to  recover &(t)  from  its  for  the  extrapolation of band-limited  functions. A recursive 

where A ,  is evaluated  as  in  Theorem  1.  Notice  that A ,  needs, 
also,  only  evaluation  of  integrals  with  finite  limits,  because 
W, can  be  derived  recursively  by 

and Wo = 0. 
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relation  has  been  obtained  for  the  evaluation  of  the  optimum 
constant,  and  the  convergence  of  the  modified  algorithm  has 
been  proven  for  the  continuous  noise  free  case.  The  problem 
of  extrapolating  noisy  data  is  considered  by  the  authors  in 
another   work [ 91 . 
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Comments and Corrections on “On the Eigenvectors of 
Symmetric  Toeplitz Matrices” 

LOKESH  DATTA . \ \ n  SALVATORI:, D. MORGERA 

Absfrc t -The  necessary and sufficient condition f o r  a matrix  to be 
doubly symmetric, as  stated in the above papcr,’ is questioned. i t  is 
proved that  ‘the  condition  under  consideration is  necessary but not 
sufficient. Somecountcrcxamplesare provided to  substantiate  theclaim. 
In fact,  what  appears  to be a new class o f  matrices possessing some 
interesting  properties is  discussed. 

In  the  above  paper,’  it is shown  that i f  Q is an  A’ X N 
doubly-symmetric  matrix  and J is the N X A‘ reflection  or  con- 
traidentity  matrix  having  ones  along  the  cross  diagonal  and 
zeroes  elsewhere,  then  (9a)  and  (9b)  state 

J Q  = QJ (1 )  

and 
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JQJ  = Q 

respectively.  Moreover,  it is claimed  that  (2) is the  necessary 
and  sufficient  condition  for Q to  be  doubly  symmetric.  We 
disagree  with  the  sufficiency  condition  of  (2),  the  proof  for 
which is as  follows. 

Let  the  elements  of Q be { 4ij l l  < i, j < N } .  Then,  using ( 2 ) ,  
we  obtain 

q i j = q N + 1 - i , N + l - j  (3) 

which  neither  implies 

4ii = q,i (symmetry)  (4) 

nor 

4i j  = 4 ~ +  1 - j ,  N +  1 - i bersymmetry) .  ( 5 )  

The  equalities  (4)  and (5)  must  both  hold  for  the  matrix Q t o  
be  doubly  symmetric,  a  property  which  cannot  be  inferred 
from  (3)  alone.   The  fact  is that  ( 3 )  does  not  imply  any  rela- 
tionship  between i and j .  Therefore,  a  matrix  satisfying (2) 
may  or   may  not   be  doubly  symmetr ic .  

We now  present  three  examples  of  matrices  which  satisfy  (2), 
but  are  not  doubly  symmetric.  

E,rample I : N = 3 

Example 2: N = 4 

Since  the  sufficiency  of ( 2 )  has  been  disproved,  a  comment 
on  the  proof of  Property 1 as  stated  in  the  paper is in  order. 
Property 1 states  .that  the  inverse of a  nonsingular  doubly- 
symmetric  matrix is doubly  symmetric.   The  proof  should  be 
concluded  by  stating  that  since JQ-‘ . /  = Q-’ and Q-’ is sym- 
metric, Q-’ is doubly  symmetric.  

Let us now  discuss  briefly  the  structure  of  matrices  that 
satisfy ( 2 ) .  It is easy to prove  that  a  matrix Q satisfying J Q J  = 
Q can  be  partitioned  as  follows  for  even  and  odd  order: 

i) N = 21W (even  order): 

Q = L:-l:i$] 
ii) AT = 2 M  + 1 (odd  order) :  
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