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AHMOKPITEIO NMANEMIZTHMIO OPAKHZ

LoTi un ypouuikol tocivountsg;

[Tp6PAnua 2 katnyopidv: Av o aplBuds TV TPOTOLIT®V €ival HiKpOTEPOS amd tov aplud Tov
CUVIGTOO®V KAOE TPOTLTTOV, TOTE LIAPYEL TAVTO VIEPETITEDO TOL TOL d1oYWPILEL.

Enopévmg ot ypappkol ta&tvountég eival ypnoiuot.
o€ TPOoPANUOTA TOAD HEYAANG OUCTATIKOTITOG
Ye mpoPAnuaTe UETPLOG OUCTATIKOTNTOS, OOV VIAPYEL VOGS GYETIKA WKPOS aplOuoc mTpoTHTmV

EKTTOULOEVOTG

EmumAéov o aptBudg tov ouvict®wcmv evog mpotvmov umopet va avéndet avbaipeta pe v mpocOnkm
VE®V GLVIGTOGMV TOL EIVOL U1 YPOUUKEG GUVAPTACELS TOV OPYIKDOV GOVIGTOOMY (7). TOAVDOVULLOL)

Ymapyovv moALd TPpofApRaTa TOV 0EV HTOPOVY VO EMAVOOVY HE YPORHIKOUS TASIVOUNTES
2116 Tponyovueveg HeBdSoLG, 1 KOpLo OLoKOAL Efvan | EDPECT TNG UN YPOLUULKNG GLUVAPTNONG
M kotnyopio Un YPOUUKOV TAEVOUNTOV EIVOL KO TO TOAVCTPOUOATIKA VELPOVIKA OiKTVO

Ye oUTE M HOPON NS UN YPOUMIKNG ouvaptnong olaympicpuod pobaivetor amd to dedouéval
exudOnonc
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To amlo perceptron (ypouuixkog talivountng)

»  Apyitextovik: Movootpopatiko oiktvo pe N gigodovg kow M vevpmdVES SUTETAYUEVOLG

o€ £VOL GTPOLA VELPOVMV. XVVATTIKEG GUVOEGELS GVVOEOVY OAOVG TOVG VEVPMOVES LE OAEC
TIC £16000VG.

¥  Nevpaoveg: Tomov McCulloch-Pitts pe hard limiter kot mpocapuolopevo KatmdEAL

EVEPYOTOINGNC ,
W= S'Q”(Z Wi X; — Wo;)
i

Agdopévov 0t o1 £€0d0t etvar aveldptnteg Leta&d TOVG, UTOPOVLE VO TIG LEAETIGOVLLE KO
aveEaptnra, Bewpoviag kédbe vevpwva Tov perceptron yopiotd:

y y:sign(Zijj —w,)

f=sign —

=sign(w - X —w,)

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv



AHMOKPITEIO NMANEMIZTHMIO OPAKHZ

To mpofinua: Aivetal Eva cOvolo P tpotonmv

ey =125y Rl

OLOUEPIGUEVO GE 2 KOTYopieg
C,={x*, u=12..K} C,={x*, p=K+LK+2,..,P}
OV Elvoll YPOULLKA dtorympiciies, OnAadn VITAPYEL Vo, SLEVUGLLOL W dote
WX >0 Wx‘eC, W-xX‘<0 Wx‘eC,

To (nroduevo eivonr va PBpebel éva tétolo dStavvouo mov vo droympilel
YPOLUUIKE TIG 2 KOt Yopieg Le EMaVaANTTIKO TPOTO.
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H yewuetpio tov mpofAnuatog

g(X) =w'Xx+w,

Lo At&vuot;usgiapdw x@Bs1o oTO Sy EPIOTIKG

vaspeminedo

Lo Aﬂémao&ﬂpm‘ﬁnw X and 1o dwymproTikd
vaspsninedo:

b l8@I _ W+ wl
il = vl

W, /W X,
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Natural Systems perform very complex information
processing tasks with completely different "hardware'
than conventional (von Neumann) computers

The 100-step program constraint [Jerry Feldman}

e Neurons operate in = Ims

e Humans do sophisticated processing in = 0.1s
e ==> Only 100 serial steps

e mm) /114SS/ve parallelism
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Artificial Neural Network (ANN)

Aspects of ANNs

net; net

<

~

unit i unit j
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Definition:

An Artificial Neural Network (ANN) is an information processing

device consisting of a large number of highly interconnected processing
elements. Each processing element (urnit) performs only very simple
computations.

Remarks:

e Each unit computes a single activation-value

e Environmental interaction through a subset of units
e Behavior depends on interconnection structure

e Structure may adapt by /earning
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Non Linear Classifiers

% The XOR problem

X4 X5 XOR | Class
0 0 0 B
0 1 1 A
1 0 1 A
1 1 0 B
XA
O °"
B oA _
ﬁ \% Ly
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** There 1s no single line (hyperplane) that separates
class A from class B. On the contrary, AND and OR
operations are linearly separable problems

.CU;
OR
LA <A
+ .1 (L)
_ 1(0.0) +(L0) _
X, B A X,
11
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* The Two-Layer Perceptron

» For the XOR problem, draw two, instead, of one lines

B oA _
0,0)" \ 2(1,0) x x,
g,(x) g,(axr)

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv

12



AHMOKPITEIO NMANEMIZTHMIO OPAKHZ

» Then class B Is located outside the shaded area and
class A inside. This is a two-phase design.

e Phase 1: Draw two lines (hyperplanes)
gl(l) > gz(l) =0

Each of them is realized by a perceptron. The
outputs of the perceptrons will be

0
M= f(gi(ﬁ)):{l =12

depending on the position of x.

e Phase 2: Find the position of x w.r.t. both lines,
based on the values of y,, y,.

13
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1st phase ond

X1 X5 Y1 Yo phase
0 0 0(-) | 0(-) B(0)
0 1 1(+) 0(-) A(1)
1 0 1(+) 0(-) A(1)
1 1 1(+) | 1(+) B(0)

e Equivalently: The computations of the first phase
perform a mapping X —> Y = [V, V.1

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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The decision is now performed on the transformed y
data.

Yo

B

0,0)7 / *1.0) v

g(y)=0

This can be performed via a second line, which can also
be realized by a perceptron.

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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» Computations of the first phase perform a
mapping that transforms the nonlinearly
separable problem to a linearly separable one.

» The architecture

L ] {/f_\x
| SN T
\ // ] H\H“‘m‘ 1
\\ 1 // \-\i\k\uﬂmh%
R S _1 ~
N 2 S~ L
| N " =
= . -
/ - \\\\ _2 —
e A 7 <= 1
-1 S 2
e 1 N/ e
25 = \_ )
o3
2
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e This is known as the two layer(™) perceptron with
one hidden and one output layer. The activation
functions are

0
f)=1,

e The neurons (nodes) of the figure realize the
following lines (hyperplanes)

1
gl(§)=X1+X2—§=O

3
gz(l)le"'xz_azo

1
g(x)=y1—2y2—§=0

(*) NOTE: Duba, Hart and Stork, in their book they call it a three layer perceptron. In general in
their notation, what we call N-layer they call it (N+1)-Layer

17
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¢ Classification capabilities of the two-layer perceptron

» The mapping performed by the first layer neurons is onto the

vertices of the unit side square, e.g.,
(0, 0), (0, 1), (1, 0), (1, 1).

> The more general case,

33 <, - I;.' \h y 1
| N A A
h 7 /
™ e __’ A //
AN - T
~ EN
k\ / a T ,/—ﬁ‘\ y 2 .
XA < s | | S
2 \"\“\ v '\..___./'J T
\\\ /’/ £ i _H\'\.
S B \
., ,//y\\\ e “ s g ! F
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4 . \ ~ e
;;’7( //// \\\ \\\\ - .—”t/
/// /ﬂ/ \\\\ \\\ " ’2/7
A /,/ \\\\ \\\ . »”/’
- "
\ Yp
/ NN
X l > 3‘*{_ j‘/
'\'wj\/"
xeR'
X = Yy = S MemEra{0] Al e il
s\ 1 | p ] I ] ] jyrus 18
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performs a mapping of a vector
onto the vertices of the unit side H; hypercube

» The mapping is achieved with p neurons each realizing
a hyperplane. The output of each of these neurons is O
or 1 depending on the relative position of x w.r.t. the
hyperplane.

19
Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv



AHMOKPITEIO NMANEMIZTHMIO OPAKHZ

» Intersections of these hyperplanes form regions in the
I-dimensional space. Each region corresponds to a
vertex of the H; unit hypercube.

93

- 9>
A A B
001 000 100
Iy 9
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For example, the 001 vertex corresponds to the
region which is located

to the (-) side of g, (x)=0
to the (-) side of g, (x)=0
to the (+) side of g5 (x)=0

011_ 111
oro] 110
001 /1o
,’ff g yz
L . \\\\\ ] - .//
000 100
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» The output neuron realizes a hyperplane in the
transformed Y space, that separates some of the
vertices from the others. Thus, the two layer
perceptron has the capability to classify vectors into
classes that consist of unions of polyhedral
regions. But NOT ANY union. It depends on the
relative position of the corresponding vertices.

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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< Three layer-perceptrons

» The architecture

™

ml </ \\“-\x,_xh__-x //’,:/f'\ /)X‘-—————__________
\\ -"“'H.___\___h /'/’ ,/ ____H:'éh-——____ -

. — /,7 // ——— - Y
", — . — \
N N —{

N — — _ ~—
- PN - T
—_f I A,

rd
< P

PN

Wi $ y; = f(net)
input 1" hidden 2" hidden output
layer layer layer layer

» This is capable to classify vectors into classes consisting
of ANY union of polyhedral regions.

» The idea is similar to the XOR problem. It realizes

more than one planes in the y e R” space.

23
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¢ Three layer-perceptrons with C classes

» The architecture for more than 2 classes

input 1" hidden 2" hidden
layer layer layer

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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“* A single “bias unit” is connected to each unit other than the
Input units

d
; . t
+* Net activation: netj — E ,Xini +Wjo — E ,Xini EWJ-.X,
=1 [

where the subscript i indexes units in the input layer, /in the
hidden; wj; denotes the input-to-hidden layer weights at the

hidden unlt/ (In neurobiology, such weights or connections
are called “synapses”)

» Each hidden unit emits an output that is a nonlinear function
of its activation, that is: y; = f(net))

25
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» The reasoning

 For each vertex, corresponding to class, say A,
construct a hyperplane which leaves THIS vertex
on one side (+) and ALL the others to the other
side (-).

e The output neuron realizes an OR gate

> Overall:

The first layer of the network forms the
hyperplanes, the second layer forms the regions
and the output neuron forms the classes.

“+ Designing Multilayer Perceptrons

» One direction Is to adopt the above rationale and
develop a structure that classifies correctly all the
training patterns.

» The other direction Is to choose a structure and
compute the synaptic weights to optimize a cost
function.

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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K/

*%* Expressive Power of multi-layer Networks

Question: Can every decision be implemented by a three-layer network
described by equation (1) ?

2n+1

g(x)= Z(sj(zﬂij(xi ) Vxel™(1=[01];n>2)

for properly chosen functions &;and g;

27
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< Each of the 2n+1 hidden units ¢; takes as input a sum of & nonlinear
functions, one for each input feature x;

<+ Each hidden unit emits a nonlinear function ¢;0f its total input
¢ The output unit emits the sum of the contributions of the hidden units

Unfortunately: Kolmogorov’s theorem tells us very little about how to
find the nonlinear functions based on data; this is the central problem in
network-based pattern recognition

28
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Backpropagation Algorithm

/

% Any function from input to output can be implemented as a three-layer
neural network

/

% These results are of greater theoretical interest than practical, since the
construction of such a network requires the nonlinear functions and the
weight values which are unknown!

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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X,

(*) two layer

X, X, /

)

-1

FIGURE 6.3. Whereas a two-layer network classitier can only implement a linear deci-
sion boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Fattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

(*) ZT0 oxIua auTo, avTIKaTeoTNOE two layer HE one layer kal three layer pe two layer

30
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% Our goal now is to set the interconnexion weights based on the training
patterns and the desired outputs

» In a three-layer network, it is a straightforward matter to understand how the
output, and thus the error, depend on the hidden-to-output layer weights

»» The power of backpropagation is that it enables us to compute an effective
error for each hidden unit, and thus derive a learning rule for the input-to-
hidden weights, this is known as:

31
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“ The Backpropagation Algorithm

» This I1s an algorithmic procedure that computes the
synaptic weights iteratively, so that an adopted cost
function is minimized (optimized)

»In a large number of optimizing procedures,
computation of derivatives are involved. Hence,
discontinuous activation functions pose a problem, i.e.,

1
0 x<

f

» There Is always an escape path!!! The logistic function

1
P 1+ exp(—ax)

IS an example. Other functions are also possible and
In some cases more desirable.

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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J(@)

1

a,>a,>a,

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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» The steps:
e Adopt an optimizing cost function, e.g.,
— Least Squares Error
— Relative Entropy

between desired responses and actual
responses of the network for the available
training patterns. That is, from now on we have
to live with errors. We only try to minimize
them, using certain criteria.

e Adopt an algorithmic procedure for the
optimization of the cost function with respect to
the synaptic weights
e.g.,

— Gradient descent
— Newton’s algorithm

— Conjugate gradient
34
Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv



AHMOKPITEIO NMANEMIZTHMIO OPAKHZ

e The task is a nonlinear optimization one. For
the gradient descent method

w, (new) = w; (old) + Aw;
03
oy

Aw, = -7

e 77 is the learning rate

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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» The Procedure:
e Initialize unknown weights randomly with small values.

e Compute the gradient terms backwards, starting with
the weights of the last (3') layer and then moving
towards the first

e Update the weights

e Repeat the procedure until a termination procedure is
met

» Two major philosophies:

e Batch mode: The gradients of the last layer are
computed once ALL training data have appeared to the
algorithm, i.e., by summing up all error terms.

e Pattern mode: The gradients are computed every time
a new training data pair appears. Thus gradients are
based on successive individual errors.

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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m—————

~— Desired output

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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» A major problem: The algorithm may converge to a
local minimum

N TN / O Initial point
«‘\j‘\\ / \\\. s //
‘ f’/ \\\\ /’// . .
¢ Final point
. ./ \\ /
\\ /'/ .
N * Optimum

A

38
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» The Cost function choice
Examples:
e The Least Squares

j = i E(i)
E®) =Y 620 =Y O~ In ()
1=12,..,N

y_(i) > Desired response of the m™ output neuron
i (1 or 0) for X(i)

37m(i) —y Actual response of the m™ output neuron,
in  the interval [0, 1], for input X(I)

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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» The cross-entropy

J = zN: E (i)
E(0) =2 Yn ()10 9, () + (L= Yo (D) IN@- 9, (1))

This presupposes an Interpretation of y and y as
probabilities

> Classification error rate. This 1s also known as
discriminative learning. Most of these techniques use a
smoothed version of the classification error.

40
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A common feature of all the above Is the
danger of local minimum convergence. “Well
formed” cost functions guarantee convergence to a
“good” solution, that Is one that classifies correctly
ALL training patterns, provided such a solution exists.
The cross-entropy cost function is a well formed one.
The Least Squares iIs not.

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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» Remark 2: Both, the Least Squares and the cross
entropy lead to output values y_(i) that
approximate optimally class a-posteriori probabilities!!!

Y (i) = P (0, |x(1))

That is, the probability of class @, given X(I) .

This is a very interesting result. It does not depend
on the underlying distributions. It is a characteristic of
certain cost functions. How good or bad is the
approximation, depends on the underlying model.
Furthermore, it is only valid at the global minimum.

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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Network Learning

t
W, . X,

L)

d d

) _ S

o net, = Z X W + W, = inwki
i=1 =0

» Let tk be the k-th target (or desired) output and zk be the k-
th computed output with £ = 1, ..., cand w represents all the
weights of the network

» The training error:( Least Square)
1 1 2
Hw)=2 X (t-2) =]t~
2 = 2

» The backpropagation learning rule is based on gradient
descent

e The weights are initialized with pseudo-random values and are
changed in a direction that will reduce the error:

0J
AW = —n—
”aw

43
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where 77 1s which indicates the relative
size of the change in weights

w(m +1) = w(m) + Aw(m)
where m is the m-th pattern presented

oJ  oJ onet, P onet,
ow, ~ onet, ow, “ ow,
0J
onet,

where the sensitivity of unit k is defined as: 6, =—

and describes how the overall error changes with the

activation of the unit's net

0J 0J oO¢
O, =— =——— —*=(t -2z )f"(net
< Onet, 6z, dnet, (t—z) T (net)

Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv
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onet,
OW,

Since net, = w, L.y therefore:

Yi

the weight update (or learning rule) for the
hidden-to-output weights is:

AW,; = noY; = nt,—z,)r (netk)yj

oJ  0J dy; oOnet,
onet;  ow,

OwW. OV,

n J
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0J : 0z,
However, % ﬁy{ Z(k }:_;(tk_zk)a—yj

¢ 0z, onet ¢
=—) (t, —2 S K=—%(t, —z, ) f'(net, w,.
kZ:;(k k)anetk 6yj kZ;‘(k k) ( k) i

Similarly as in the preceding case, we define the
sensitivity for a hidden unit: c
6= f (netj)kz_llwkjék

which means that

The learning rule for the input-to-hidden
weights Is:
AW = X0, = U[Zwkjﬁkj f*(net;)x
5
46
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STOCHASTIC BACKPROPAGATION

» Starting with a pseudo-random weight configuration, the
stochastic backpropagation algorithm can be written as:

Begin initialize ny; w, criterion 6, n, m « O
ClOR TR SIEie T
X" «— randomly chosen pattern
Wi S R OSSR PSR O Y
until [JJVI(wW)]] < 6
return w

End

47
Tunua HAekTpoAOywv Mnxavikwv & Mnxavikwv YRoAoyioTwv



AHMOKPITEIO NMANEMIZTHMIO OPAKHZ

BATCH BACKPROPAGATION

» Starting with a pseudo-random weight configuration, the batch
backpropagation algorithm can be written as:

Begin initialize ny; w, criterion 6, n, r «< O
QOB < e AL (EPOCRY
Mk €SR0 s TAWTE R O% S e 20
oM, < Wil (TEL
X" « select pattern
T N e (O Sy S e el
until m=n
WESEES  m Vi ERE X o S pr Sl o A T O
until ||VI(W)]|] < 6
return w
End
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» Stopping criterion

e The algorithm terminates when the change in the criterion
function J(w) is smaller than some preset value 0

e There are other stopping criteria that lead to better performance
than this one

e So far, we have considered the error on a single pattern, but we
want to consider an error defined over the entirety of patterns in
the training set

e The total training error is the sum over the errors of n individual

patterns ’
J=>1J, (1)
p=1
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» Stopping criterion (cont.)

e A weight update may reduce the error on the
single pattern being presented but can increase
the error on the full training set

e However, given a large number of such individual
updates, the total error of equation (1) decreases
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Definitions

* Training set:
» A set of examples used for learning, that is to fit the
parameters [i.e., weights] of the classifier.

+» Validation set:

» A set of examples used to tune the parameters [i.e.,
architecture, not weights] of a classifier, for example to
choose the number of hidden units in a neural network.

% Test set:

» A set of examples used only to assess the performance
[generalization] of a fully-specified classifier.
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HOLD OUT METHOD

Since our goal is to find the network having the best performance on new data, the
simplest approach to the comparison of different networks is to evaluate the
error function using data which is independent of that used for training. Various
networks are trained by minimization of an appropriate error function defined
with respect to a training data set. The performance of the networks is then
compared by evaluating the error function using an independent validation
set, and the network having the smallest error with respect to the validation set
is selected. This approach is called the hold out method. Since this procedure
can itself lead to some overfitting to the validation set, the performance of the
selected network should be confirmed by measuring its performance on a third
independent set of data called a test set.

The crucial point is that a fest set is never used to choose among two or
more networks, so that the error on the test set provides an unbiased
estimate of the generalization error. Any data set that is used to choose the best
of two or more networks is, by definition, a val/idation set, and the error of the
chosen network on the validation set is optimistically biased.

Read more:
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¢ Learning Curves

» Before training starts, the error on the training set is high; through
the learning process, the error becomes smaller

» The error per pattern depends on the amount of training data and
the expressive power (such as the number of weights) in the
network

» The average error on an independent test set is always higher
than on the training set, and it can decrease as well as increase

» A validation set is used in order to decide when to stop training ;
we do not want to overfit the network and decrease the power of
the classifier generalization

“we stop training at a minimum of the error on the validation set”
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1 T T T T T 1 T T T P!?}r“:.ﬁ-“
2 3 4 5 6 7 8 9 10l

FIGURE 6.6. A learning curve shows the criterion function as a function of the amount
of training, typically indicated by the number of epochs or presentations of the full train-
ing set. We plot the average error per pattern, that is, 1/n}_ ., .. The validation error
and the test or generalization error per pattern are virtually always higher than the train-
ing error. In some protocols, training is stopped at the first minimum of the validation
sel. From: Richard O. Duda, Peter E. Harl, and David G. Stork, Fattern Classification.

Copyright @ 2001 by John Wiley & Sons, Inc.
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REGULARIZATION

» Choice of the network size.

How big a network can be. How many layers and how
many neurons per layer?? There are two major
directions
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Pruning Techniques

» These techniques start from a large network
and then weights and/or neurons are
removed iteratively, according to a criterion.
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—Methods based on parameter sensitivity

63 =) g,0w, +%Z h. oW’ +%Z > h;dw,ow,
[ [ i J

+ higher order terms where

0J Pl
o I —
OW,OW

OW.

Near a minimum and assuming that

5) = %Z h.ow?
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Pruning is now achieved in the following procedure:

v’ Train the network using Backpropagation
for a number of steps
v' Compute the saliencies
S — hiiWi2
' 2
v' Remove weights with small s..
v Repeat the process

—Methods based on function regularization

Je i E(i)+aE , (w)
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The second term favours small values for the weights,
e.g.,
E, (@)= h(w;)
k

2

W
Z 2
Wy +W,

h(w) =

where W, =1
After some training steps, weights with small values
are removed.
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Constructive techniques

They start with a small network and keep
Increasing it, according to a predetermined
procedure and criterion.
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Why not start with a large network and leave
the algorithm to decide which weights are small??
This approach is just naive. It overlooks that
classifiers must have good generalization properties.
A large network can result in small errors for the
training set, since it can learn the particular details of
the training set. On the other hand, it will not be able
to perform well when presented with data unknown to
It. The size of the network must be:

e Large enough to learn what makes data of the
same class similar and data from different classes
dissimilar

e Small enough not to be able to learn underlying

differences between data of the same class. This
leads to the so called overfitting.
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» Overtraining is another side of the same coin, i.e.,
the network adapts to the peculiarities of the training
set.

S~ T test set

— training set

number of epochs
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+» Generalized Linear Classifiers

» Remember the XOR problem. The mapping
f(0,(%)
| 1(9,(%))_

f (_) = The activation function transforms the
nonlinear task into a linear one.

X—y=

» In the more general case:
e let Xe R' and a nonlinear classification task.

O
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e Are there any functions and an appropriate k, so
that the mapping

(%)

f (X))

transforms the task into a linear one, in the y € R*
space? Lo

e If this is true, then there exists a hyperplane W e R*
so that
If w,+w' y>0, Xew,
w, +W' y<0, Xew,
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»In such a case this Is equivalent with
approximating the nonlinear discriminant function
g(x), in terms of f.(x), i.e.,

902+ YW (-9 O

> Given f.(x) , the task of computing the weights
IS a linear one.

» How sensible is this??

e From the numerical analysis point of view, this
is justified if f.(Xx) are interpolation functions.

e From the Pattern Recognition point of view, this
IS justified by Cover’s theorem
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> Capacity of the I-dimensional space in Linear
Dichotomies

> Assume N points in R' assumed to be in general
position, that is:

Not 7 +1 of these lie on a /-1 dimensional space

— F-’.’r-f’- .
e
not in general general
position position
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» Cover’s theorem states: The number of groupings
that can be formed by (I-1)-dimensional hyperplanes
to separate N points in two classes is

I (N =1 N-1)  (N-D!
O(N,|)=2i201£ i ] ( i j_(N—l—i)!i!

N=4, I=2, O(4,2)=14

A ® / e D -
2 I C - \\\
3 7
4 5

Notice: The total number of possible groupings is
4=
Tunua )\EKT]E)O)\c')ywv Mnxavikwv & Mnxavikwv YnoAoyIoTwvV
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» Probability of grouping N points in two linearly
separable classes is

N = r(l+1)
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Thus, the probability of having N points in linearly

separable classes tends to 1, for large | , provided
N<2(1+1)

Hence, by mapping to a higher dimensional space,
we increase the probability of linear separability,
provided the space is not too densely populated.
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*» Radial Basis Function Networks (RBF)

» Choose
|5
P ; /f” \
/ \\O' 1 _ | ||| [ \Oy
/ \ TN
/ \ / 5 | / \\
Jlfr' / \ || ‘I / \
/ \‘ / / \ / | / \
/ \ / \ o\ / \
~ g . " 4 . \“‘u /f s > - . \m
C 1 C2 C 3 C4
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Equivalent to a single layer network, with RBF
activations and linear output node.
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The XOR problem

e Define:

0 0.135 1 1
. — , —
0 1 1 0.135
1 0.368 0 0.368
— , —
0 0.368 il 0.368
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902 -yzlk
N B
O (Lo
(050) / (190) .
- X, 0 1‘:‘ Yy

| g(y) =Y. +Yy,-1=0

g(x) =exp(-x—¢,[|*) +exp(-fx—c,[ ) -1=0
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» Training of the RBF networks

e Fixed centers: Choose centers randomly among the
data points. Also fix g;’s. Then

g(X)=w, +w'y

IS a typical linear classifier design.

e Training of the centers: This is a nonlinear
optimization task

e Combine supervised and unsupervised learning
procedures.

e The unsupervised part reveals clustering tendencies
of the data and assigns the centers at the cluster

representatives.
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*» Universal Approximators

It has been shown that any nonlinear continuous
function can be approximated arbitrarily close, both, by
a two layer perceptron, with sigmoid activations, and
an RBF network, provided a large enough number of
nodes is used.

s Multilayer Perceptrons vs. RBF networks

» MLP’s involve actlvatlons of global nature. All points
on a plane w' X =C give the same response.

» RBF networks have activations of a local nature, due
to the exponential decrease as one moves away
from the centers.

» MLP’s learn slower but have better generalization
properties
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¢ Support Vector Machines: The non-linear case

> Recall that the probability of having linearly
separable  classes increases  as the
dimensionality of the feature vectors

Increases. Assume the mapping:

ZeR'—)XeRk, kK> I

Then use SVM in RX

» Recall that in this case the dual problem
formulation will be

N
1
maximize(E A " > A4, yiijiTXj)
A i—1 i |

where y. & R
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Also, the classifier will be

g(y)=w'y+w,
NS
= AR
=1
where x — y € R"

Thus, inner products in a high dimensional space
are involved, hence

e High complexity

78
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» Something clever. Compute the inner products in
the high dimensional space as functions of inner
products performed in the low dimensional
space!!!

> Is this POSSIBLE?? Yes. Here is an example
Let x=[x,x] eR?

X;

Let x > y=|+/2xX, [e R’
, . 2
XZ

Then It is easy to show that

= (X X;)°

_| _J
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> Mercer’'s Theorem

Letx > d(X) e H

Then, the inner product in 4

2 0. ()P (y)=K(xy)

where
[K(xy)g(x)g(y)dxdy >0

for any g(x), x:

[9"(x)dx < +o0

K(x,y) symmetric function known as kernel.
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> The oppoSite IS ESdVTIE R KEhel, with the above

properties, corresponds to an inner product in SOME
space!!!

» Examples of kernels
e Radial basis Functions:

K(X,2)= expL_ |x _ZZH }
O

e Polynomial:
K(x,2)=(x"z+1)% q>0

e Hyperbolic Tangent:
K(x,z) =tanh(Bx' z+7)
for appropriate values of g, .
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> SVM Formulation

e Step 1: Choose appropriate kernel. This
Implicitely assumes a
mapping to a higher
dimensional (yet, not known) space.

e Step 2: I’T]a_X(Z/1——Z/1 iy K (X, X))
subjectto O<ﬂ,<C =824 5N

Zi:;tiyi n

This results to an implicit combination

:Zﬂ“iyif(Xi)
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e Step 3: Assign x to

oy (@,) if g(x)= Zz Y, K%, X)+ W, > (<)0

e The SVM Architecture
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+» Decision Trees

L)

This is a family of non-linear classifiers. They are multistage decision
systems, in which classes are sequentially rejected, until a finally
accepted class is reached. To this end:

» The feature space Is split into unique regions Iin a sequential
manner.

» Upon the arrival of a feature vector, sequential decisions, assigning
features to specific regions, are performed along a path of nodes
of an appropriately constructed tree.

» The sequence of decisions is applied to individual features, and the
gueries performed in each node are of the type:

s feature X, <a
where a Is a pre-chosen (during training) threshold.
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» The figures below are such examples. This type of trees is

known as Ordinary Binary Classification Trees (OBCT). The
decision hyperplanes, splitting the space into regions, are
parallel to the axis of the spaces. Other types of partition are
also possible, yet less popular.

ri
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» Design Elements that define a decision tree.

e Each node, t, is associated with a subset X, < X, where X
IS the training set. At each node, X; is split into two (binary
splits) disjoint descendant subsets X,y and X;, where

Xey N Xyy=9
iy Y Xin = X

X,y Is the subset of X, for which the answer to the query at
node t is YES. Xy Is the subset corresponding to NO. The
split is decided according to an adopted question (query).
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e A splitting criterion must be adopted for the best split of X,
Into X,y and X, .

e A stop-splitting criterion must be adopted that controls the
growth of the tree and a node is declared as terminal
(leaf).

e A rule is required that assigns each (terminal) leaf to a
class.

88
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» Set of Questions: In OBCT trees the set of guestions is of

the type
IS Xi <a ?

The choice of the specific x; and the value of the threshold o,
for each node t, are the results of searching, during training,
among the features and a set of possible threshold values.
The final combination is the one that results to the best
value of a criterion.
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» Splitting Criterion: The main idea behind splitting at each
node is the resulting descendant subsets X;, and X, to be
more class homogeneous compared to X,. Thus the criterion
must be in harmony with such a goal. A commonly used
criterion is the node impurity

() = ZP [t)log, P(, | t)

NI
and P(w, |t)~ —-
Nt

where Nti IS the number of data points in X, that belong to
class . The decrease in node impurity is defined as:

N N
Al = 1(1) ——= 1) ——=1(ty)

t t
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e The goal iIs to choose the parameters In each node
(feature and threshold) that result in a split with the
highest decrease in impurity.

e Why highest decrease? Observe that the highest value of
I(t) is achieved if all classes are equiprobable, i.e., X, Is
the least homogenous.

» Stop - splitting rule. Adopt a threshold T and stop splitting a
node (i.e., assign it as a leaf), if the impurity decrease is less
than T. That is, node t is “pure enough”.

» Class Assignment Rule: Assign a leaf to a class o, , where:

j =argmax P(w. |1)
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» Summary of an OBCT algorithmic scheme:

e Begin with the root node, 1.e., X; = X

e For each new node ¢

+ For every feature . k=1,2...., [
« For every value ap,.n=1,2,.... Nig.
q r r . . . .
« Generate X,y and X5 according to the answer in the question: is
J!“;:{é:l < Q. t=1,2.... . N;
. Compute the impurity decrease
« End
« Choose gy, leading to the maximum decrease w.r. to rp
+ End

+ Choose rp, and associated oy, leading to the overall maximum de-
crease of Impurity

+ If stop-splitting rule is met declare node ¢ as a leaf and designate it
with a class label

+ If not, generate two descendant nodes 4 and #,; with associated subsets
XNoy and X;y, depending on the answer to the question: 1= vy, < cgyn,

e End
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e A critical factor in the design is the size of the tree.

Usually one grows a tree to a large size and then applies
various pruning techniques.

e Decision trees belong to the class of unstable classifiers.
This can be overcome by a number of “averaging”
techniques. Bagging Is a popular technique. Using
bootstrap techniques in X, various trees are constructed,

T,, 1I=1, 2, ..., B. The decision is taken according to a
majority voting rule.
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¢ Combining Classifiers

The basic philosophy behind the combination of different
classifiers lies in the fact that even the “best” classifier fails In
some patterns that other classifiers may classify correctly.
Combining classifiers aims at exploiting this complementary
iInformation residing in the various classifiers.

Thus, one designs different optimal classifiers and then
combines the results with a specific rule.

» Assume that each of the, say, L designed classifiers provides
at its output the posterior probabilities:

P(w |X),i=1 2,.., M
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e Product Rule: Assign X to the class o, :
L

P, (@, | x)
j=1
where Pj (a)k | 5) IS the respective posterior probability of the
ji classifier.

| = arg max
k

e Sum Rule: Assign X to theL class : w
i =argmax > P.(o, | x)
k

=
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e Majority Voting Rule: Assign X to the class for which
there is a consensus or when at least /_ of the classifiers
agree on the class label of X where:

e

%+1, L even

e
>

\

otherwise the decision Is rejection, that is no decision Is
taken.

Thus, correct decision is made if the majority of the
classifiers agree on the correct label, and wrong decision
If the majority agrees in the wrong label.
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» Dependent or not Dependent classifiers?

e Although there are not general theoretical results,
experimental evidence has shown that the more
Independent in their decision the classifiers are, the higher
the expectation should be for obtaining improved results
after combination. However, there Is no guarantee that
combining classifiers results In better performance
compared to the “best” one among the classifiers.

» Towards Independence: A number of Scenarios.

e Train the individual classifiers using different training data
points. To this end, choose among a number of
possibilities:

— Bootstrapping: This is a popular technique to combine

unstable classifiers such as decision trees (Bagging belongs
to this category of combination).
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— Stacking: Train the combiner with data points that have been
excluded from the set used to train the individual classifiers.

— Use different subspaces to train individual classifiers:
According to the method, each individual classifier operates
In a different feature subspace. That is, use different features
for each classifier.

e The majority voting and the summation schemes rank
among the most popular combination schemes.

e Training individual classifiers in different subspaces seems
to lead to substantially better improvements compared to
classifiers operating in the same subspace.

e Besides the above three rules, other alternatives are also
possible, such as to use the median value of the outputs of

individual classifiers. 08
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*» The Boosting Approach
» The origins: Is it possible a weak learning algorithm (one
that performs slightly better than a random guessing) to be
boosted into a strong algorithm? (Villiant 1984).

» The procedure to achieve It:

e Adopt a weak classifier known as the base classifier.

e Employing the base classifier, design a series of
classifiers, in a hierarchical fashlon each time employing
a different weighting of the tralnlng samples. Emphasis in
the weighting Is given on the hardest samples, i.e., the

ones that keep “failing”.

e Combine the hierarchically designed classifiers by a
weighted average procedure.
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» The AdaBoost Algorithm.
Construct an optimally designed classifier of the form:

f (x) =sign{F (x)}

F(x) = Z ak(”(ﬁ; o )

where CD(Z;Qk) denotes the base classifier that returns a
binary class label:

where:

o(x & )e{-11

9 is a parameter vector.
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e The essence of the method.

Design the series of classifiers:
o(%:9,), 0% 9,), ... p(X 9,

The parameter vectors

9., k=1,2,..K

are optimally computed so as:
— To minimize the error rate on the training set.

— Each time, the training samples are re-weighted so that the
weight of each sample depends on its history. Hard
samples that “insist” on failing to be predicted correctly, by

the previously designed classifiers, are more heavily
weighted.
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» Updating the weights for each sample x.,1=1, 2, ..., N
W_(m+1) fac Wim eXp( y;d m(p( |1Qm))
| Zm
— Z.Is a normalizing factor common for all samples.

1|1P
2 P

m

where P_<0.5 (by assumption) is the error rate of the
optimal classifier o(x; 9 ) at stage m. Thus «,>0.

— The term: exp( yia m§0( |1§m))

takes a large value if Y(O(X.n9 )<0 (wrong
classification) and a small value in the case of correct

classification {y.¢p(x,; 3. )> 0}

— The update equation is of a multiplicative nature. That
IS, successive large values of weights (hard samples)
result in larger weight for the next iteration
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e The algorithm

e Initialize: u'élj = % 1=1.2... N
e Initialize: m =1
*« Repeat

Compute optimum #,, in ¢(-;8,,) by minimizing F,,

Compute the optimum F,

Ay = 2 In l;i’“
S = 0.0
Fori=1to NV

" H-‘Em-l_l’.l _ k)

w,exp (—y (@0, )

(m+1)

i

¥ L = dm + U
End{For}
Fori=1ta N

" uﬂémH} = H-‘,I.é?n-l_l;ll.-"lz;.n
End {For}

K=m

m=1m-+1

e Until a termination criterion 1= met.

o () =sign(Ti, axd(-, b))
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e Training error rate tends to zero after a few Iterations.
The test error levels to some value.

e AdaBoost Is greedy In reducing the margin that samples
leave from the decision surface.

_ 1]
.i Training set
I.l,: Test set
| "'l=l /
| ! ﬁl"'h‘t" " v
| /
¥
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