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1. INTRODUCTION

Pattern recognition stems from the need for automated
machine recognition of objects, signals or images, or the
need for automated decision-making based on a given set
of parameters. Despite over half a century of productive
research, pattern recognition continues to be an active
area of research because of many unsolved fundamental
theoretical problems as well as a rapidly increasing num-
ber of applications that can benefit from pattern recogni-
tion.

A fundamental challenge in automated recognition and
decision-making is the fact that pattern recognition prob-
lems that appear to be simple for even a 5-year old may in
fact be quite difficult when transferred to machine do-
main. Consider the problem of identifying the gender of a
person by looking at a pictorial representation. Let us use
the pictures in Fig. 1 for a simple demonstration, which
include actual photographs as well as cartoon renderings.
It is relatively straightforward for humans to effortlessly
identify the genders of these people, but now consider the
problem of having a machine making the same decision.
What distinguishing features are there between these two
classes—males and females—that the machine should
look at to make an intelligent decision? It is not difficult
to realize that many of the features that initially come to
mind, such as hair length, height-to-weight ratio, body

curvature, facial expressions, or facial bone structure—
even when used in combination—may fail to provide cor-
rect male/female classification of these images. Although
we can naturally and easily identify each person as male
or female, it is not so easy to determine how we come to
this conclusion, or more specifically, what features we use
to solve this classification problem.

Of course, real-world pattern recognition problems are
considerably more difficult then even the one illustrated
above, and such problems span a very wide spectrum of
applications, including speech recognition (e.g., auto-
mated voice-activated customer service), speaker identifi-
cation, handwritten character recognition (such as the one
used by the postal system to automatically read the ad-
dresses on envelopes), topographical remote sensing, iden-
tification of a system malfunction based on sensor data or
loan/credit card application decision based on an individ-
ual’s credit report data, among many others. More re-
cently, a growing number of biomedical engineering-
related applications have been added to this list, includ-
ing DNA sequence identification, automated digital mam-
mography analysis for early detection of breast cancer,
automated electrocardiogram (ECG) or electroencephalo-
gram (EEG) analysis for cardiovascular or neurological
disorder diagnosis, and biometrics (personal identification
based on biological data such as iris scan, fingerprint,
etc.). The list of applications can be infinitely extended,
but all of these applications share a common denominator:
automated classification or decision making based on ob-
served parameters, such as a signal, image, or in general a
pattern, obtained by combining several observations or
measurements.

This article provides an introductory background to
pattern recognition and is organized as follows: The ter-

Figure 1. Pattern recognition problems that may be trivial for us may be quite challenging for
automated systems. What distinguishing features can we use to identify above pictured people as
males or females?
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minology commonly used in pattern recognition is intro-
duced first, followed by different components that make up
a typical pattern recognition system. These components,
which include data acquisition, feature extraction and se-
lection, classification algorithm (model) selection and
training, and evaluation of the system performance, are
individually described. Particular emphasis is then given
to different approaches that can be used for model selec-
tion and training, which constitutes the heart of a pattern
recognition system. Some of the more advanced topics and
current research issues are discussed last, such as kernel-
based learning, combining classifiers and their many ap-
plications.

2. BACKGROUND AND TERMINOLOGY

2.1. Commonly Used Terminology in Pattern Recognition

A set of variables believed to carry discriminating and
characterizing information about an object to be identified
are called features, which are usually measurements or
observations about the object. A collection of d such fea-
tures, ordered in some meaningful way into d-dimensional
column vector is the feature vector, denoted x, which
represents the signature of the object to be identified. The
d-dimensional space in which the feature vector lies is re-
ferred to as the feature space. A d-dimensional vector in a
d-dimensional space constitutes a point in that space. The
category to which a given object belongs is called the class
(or label) and is typically denoted by o. A collection of fea-
tures of an object under consideration, along with the cor-
rect class information for that object, is then called a
pattern. Any given sample pattern of an object is also re-
ferred to as an instance or an exemplar. The goal of a pat-
tern recognition system is therefore to estimate the correct
label corresponding to a given feature vector based on
some prior knowledge obtained through training. Training
is the procedure by which the pattern recognition system
learns the mapping relationship between feature vectors
and their corresponding labels. This relationship forms
the decision boundary in the d-dimensional feature space
that separates patterns of different classes from each
other. Therefore, we can equivalently state that the goal
of a pattern recognition algorithm is to determine these
decision boundaries, which are, in general, nonlinear
functions. Consequently, pattern recognition can also be
cast as a function approximation problem. Figure 2 illus-
trates these concepts on a hypothetical 2D, four class
problem. For example, feature 1 may be systolic blood
pressure measurement and feature 2 may be the weight of
a patient, obtained from a cohort of elderly individuals
over 60 years of age. Different classes may then indicate
number of heart attacks suffered within the last 5-year
period, such as none, one, two, or more than two.

The pattern recognition algorithm is usually trained
using training data, for which the correct labels for each of
the instances that makes up the data is a priori known.
The performance of this algorithm is then evaluated on a
separate test or validation data, typically collected at the
same time or carved of the existing training data, for
which the correct labels are also a priori known. Unknown

data to be classified, for which the pattern recognition al-
gorithm is trained, is then referred to as field data. The
correct class labels for these data are obviously not known
a priori, and it is the classifier’s job to estimate the correct
labels.

A quantitative measure that represents the cost of
making a classification error is called the cost function.
The pattern recognition algorithm is specifically trained to
minimize this function. A typical cost function is the mean
square error between numerically encoded values of ac-
tual and predicted labels. A pattern recognition system
that adjusts its parameters to find the correct decision
boundaries, through a learning algorithm using a training
dataset, such that a cost function is minimized, is usually
referred to as the classifier or more formally as the model.
Incorrect labeling of the data by the classifier is an error
and the cost of making a decision, in particular an incor-
rect one, is called the cost of error. We should quickly note
that not all errors are equally costly. For example, consider
the problem of estimating whether a patient is likely to
experience myocardial infarction by analyzing a set of fea-
tures obtained from the patient’s recent ECG. Two possi-
ble types of error exist. The patient is in fact healthy but
the classifier predicts that s/he is likely to have a myocar-
dial infarction is known as a false positive (false alarm er-
ror), and typically referred to as type I error. The cost of
making a type I error might be the side effects and the cost
of administering certain drugs that are in fact not needed.
Conversely, failing to recognize the warning signs of the
ECG and declaring the patient as perfectly healthy is a
false negative, also known as the type II error. The cost of
making this type of error may include death. In this case,
a type II error is costlier than a type I error. Pattern rec-
ognition algorithms can often be fine-tuned to minimize
one type of error at the cost of increasing the other type.

Two parameters are often used in evaluating the per-
formance of a trained system. The ability or the perfor-
mance of the classifier in correctly identifying the classes
of the training data, data that it has already seen, is called
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Figure 2. Graphical representation of data and decision bound-
aries.
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the training performance. The training performance is
typically used to determine how long the training should
continue, or how well the training data have been learned.
The training performance is usually not a good indicator of
the more meaningful generalization performance, which is
the ability or the performance of the classifier in identify-
ing the classes of previously unseen patterns.

In this article, we focus on the so-called supervised
classification algorithms, where it is assumed that a train-
ing dataset with pre-assigned class labels is available. Ap-
plications exist where the user has access to data without
correct class labels. Such applications are handled by un-
supervised clustering algorithms. Unsupervised algo-
rithms are not discussed in this article; however, some of
the more commonly used clustering algorithms are men-
tioned in the last section of this article for users whose
specific applications may call for unsupervised learning.

2.2. Common Issues in Pattern Recognition

The two-feature, four class hypothetical example shown in
Fig. 2 represents a rather overly optimistic, if not an ideal
scenario: Patterns from any given class are perfectly sep-
arable from those of other classes through some boundary,
albeit a nonlinear one. In fact, such problems are often
considered as easy for most pattern recognition applica-
tions. In most applications of practical interest, the data
are not as cooperative. A more realistic scenario is the one
shown in Fig. 3, where the patterns from different classes
overlap in the feature space. Looking at data distribution
in Fig. 3, one may think that it is impossible to draw a
decision boundary that perfectly separates instances of
one class from others, and that the algorithm’s task is an
impossible one. Not so. The task of the pattern recognition
algorithms is to determine the decision boundary that
provides the best possible generalization performance (on
unseen data), and not one that provides perfect training
performance. In fact, even if it were possible to find such a
decision boundary that provides perfect separation of
training data, such boundaries are usually not desired be-
cause much of the overlap is typically caused by noisy
data, and finding a decision boundary that provides per-

fect training data classification would amount to learning
the noise in the data.

Learning noise invariably causes an inferior general-
ization performance on the test data. This phenomenon is
observed often in pattern recognition and is referred to as
overtraining or overfitting. Several approaches have been
proposed to prevent overfitting, such as early termination
of the training algorithm, or using a separate validation
dataset, and adjusting the algorithm parameters until the
performance on this validation dataset is optimized.

Uncooperative data can be because of a variety of ex-
ternal problems; for example, the dataset may be uncoop-
erative because of the number of features being
inadequate. For the hypothetical case mentioned above,
if we were to add patient’s age and cholesterol levels, the
data (then in a 4D space) may be better separable. The
opposite problem, presence of irrelevant features, can also
be a problem. Another culprit for overlapping data is the
outliers in the data. Even if the features are selected ap-
propriately, outliers may always cause overlapping pat-
terns (for example, it is not unusual to see people with
high weight and high blood pressure and no apparent car-
diovascular problems). It is therefore essential to use ap-
propriate feature extraction/selection and outlier
detection approaches to minimize the effects of uncooper-
ative data.

Finally, a very important issue is the evaluation of
classifier’s performance. It is mentioned above that a test
dataset is used for this purpose, but considering that the
test dataset is really a subset of the original data, a portion
of which were carved out for training, how can we ensure
that the evaluation we conduct on this data represents the
true performance of the system on never-before-seen field
data?

All these issues lie within the domain of pattern rec-
ognition, and they are discussed below as we describe the
individual components of a complete pattern recognition
system.

3. COMPONENTS OF A PATTERN RECOGNITION SYSTEM

A classifier model and its associated training algorithm
are all that are usually associated with pattern recogni-
tion. However, a complete pattern recognition system con-
sists of several components, shown in Fig. 4, of which
selection and training of such a model is just one compo-
nent. We describe each component prior to actual model
selection in this section, giving particular emphasis to
model selection, training, and evaluation in subsequent
sections.

3.1. Data Acquisition

Apart from employing an appropriate classification algo-
rithm, one of the most important requirements for design-
ing a successful pattern recognition system is to have
adequate and representative training and test datasets.
Adequacy ensures that a sufficient amount of data exists
to learn the decision boundary as a functional mapping
between the feature vectors and the correct class labels.
There is no rule that specifies how much data is sufficient;
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Figure 3. Uncooperative data are common in practical pattern
recognition applications.
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however, a general guideline indicates that there should
either be at least 10 times the number of training data
instances as there are adjustable parameters in the clas-
sifier (1), or 10 times the instances per class per feature, to
reduce or minimize overfitting (2). Representative data, on
the other hand, ensures that all meaningful variations of
field data instances that the system is likely to see are
sampled by the training and test data. This condition is
often more difficult to satisfy, as it is usually not practical
to determine whether the training data distribution ade-
quately spans the entire space on which the problem is
defined. An educated guess is usually all that is available
to the designer in choosing the type of sensors or mea-
surement schemes that will provide the data.

3.2. Preprocessing

An essential, yet often overlooked step in the design pro-
cess is preprocessing, where the goal is to condition the
acquired data such that noise from various sources are
removed to the extend that it is possible. Various filtering
techniques can be employed if the user has prior knowl-
edge regarding the spectrum of the noise. For example, if
the measurement environment is known to introduce high
(low)-frequency noise, an appropriate low (high)-pass DIG-

ITAL FILTER may be employed to remove the noise. ADAPTIVE

FILTERS can also be used if the spectral characteristics of
the noise are known to change in time.

Conditioning may also include normalization, as clas-
sifiers are known to perform better with feature values
that lie in a relatively smaller range. Normalization can be
done with respect to the mean and variance of the feature
values or with respect to the amplitude of the data. In the
former, instances are normalized such that the normalized
data have zero mean and unit variance

x0i ¼
xi � mi

si
; ð1Þ

where xi indicates the ith feature of original data instance,
x0i is its normalized value, mi is the mean, and si is the
standard deviation of xi. In the latter, instances are simply
divided by a constant so that all feature values are re-
stricted to ½�1 1� range:

x¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼ 1 ðxiÞ
2

q : ð2Þ

Finally, if great magnitude differences exist between the
individual feature values, a logarithmic transformation,
for example, can be used to reduce the dynamic range of
the feature values.

Preprocessing should also include outlier removal
when possible. For low-dimensional problems ðd � 3Þ, the
data can be plotted, which often provides visual clues on
whether any outliers are present. For data with d > 3,
Mahalanobis distance can be used, particularly if the data
follow a Gaussian or near-Gaussian distribution. In this
case, one computes the Mahalanobis distance of each data
point from the distribution of training data instances for
the class it belongs, and if this distance is larger than a
threshold (such as somemultiple of the standard deviation
of the data), that instance can be considered as an outlier.
The Mahalanobis distance of instance x from the training
data of instances of class oj can be computed as

Mj ¼ðx� ljÞ
TS�1

j ðx� ljÞ; ð3Þ

where lj is the mean of class oj instances and Sj is their
covariance matrix.

3.3. Feature Extraction

Both feature extraction and feature selection steps (dis-
cussed next) are in effect dimensionality reduction proce-
dures. In short, the goal of feature extraction is to find
preferably small number of features that are particularly
distinguishing or informative for the classification pro-
cess, and that are invariant to irrelevant transformations
of the data. Consider the identification of a cancerous tis-
sue from an MRI image: The shape, color contrast ratio of
this tissue to that of surrounding tissue, 2D Fourier spec-
trum, and so on are all likely to be relevant and distin-
guishing features, but the height or eye color of the patient
are probably not. Furthermore, although the shape is a
relevant feature, tumors whose shapes are small or large,

Data Acquisition

Feature 
Extraction

Preprocessing

Feature
Selection

Model Selection & 
Training

Evaluation

Solution

A classification / decision making
problem from the real world

How to acquire data, how much 
data should be acquired ?

Noise removal, filtering,
normalization, outlier removal

Extraction of relevant features
from the available data, followed 
by selection of the minimum set
of most relevant features. Both
steps also contribute to 
dimensionality reduction

Choosing the type of classification
model and training it with an
appropriate learning algorithm

Estimating the true generalization
performance of the classifier in
the real world? Confidence in this
estimation?

Figure 4. Components of a pattern recognition system.
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that are a few centimeters to the left or right, or that are
rotated in one direction or another, are still tumors. There-
fore, an appropriate transformation may be necessary to
obtain a translation, rotation, and scale invariant version
of the shape feature. The goal of feature selection, on the
other hand, is to select a yet smaller subset of the ex-
tracted features that are deemed to be the most distin-
guishing and informative ones.

The importance of dimensionality reduction in pattern
recognition cannot be overstated. A small but informative
set of features significantly reduces the complexity of the
classification algorithm, the time and memory require-
ments to run this algorithm, as well as the possibility of
overfitting. In fact, the detrimental effects of a large num-
ber of features are well known within the pattern recog-
nition community, and affectionately referred to as the
curse of dimensionality. It is therefore important to keep
the number of features as few as possible, while ensuring
that enough discriminating power is retained. The Ock-
ham’s Razor, the well-known philosophical argument of
William of Ockham (1284–1347), that entities are not to be
multiplied without necessity is often mentioned when the
virtues of dimensionality reduction are discussed.

Feature extraction is usually obtained from a mathe-
matical transformation on the data. Some of the most
widely used transformations are linear transformations,
such as PRINCIPAL COMPONENT ANALYSIS and linear discrimin-
ant analysis.

3.3.1. Principal Component Analysis (PCA). PCA, also
known as Karhunen–Loève transformation, is one of the
oldest techniques in multivariate analysis and is the most
commonly used dimensionality reduction technique in
pattern recognition. It was originally developed by Pear-
son in 1901 and generalized by Loéve in 1963.

The underlying idea is to project the data to a lower
dimensional space, where most of the information is re-
tained. In PCA, it is assumed that the information is car-
ried in the variance of the features, that is, the higher the
variation in a feature, the more information that feature
carries. Hence, PCA employs a linear transformation that
is based on preserving the most variance in the data using
the least number of dimensions. The data instances are
projected onto a lower dimensional space where the new
features best represent the entire data in the least squares
sense. It can be shown that the optimal approximation, in
the least square error sense, of a d-dimensional random
vector x 2 <d by a linear combination of d0od indepen-
dent vectors is obtained by projecting the vector x onto the
eigenvectors ei corresponding to the largest eigenvalues li
of the covariance matrix (or the scatter matrix) of the data
from which x is drawn. The eigenvectors of the covariance
matrix of the data are referred to as principal axes of the
data, and the projection of the data instances on to these
principal axes are called the principal components. Di-
mensionality reduction is then obtained by only retaining
those axes (dimensions) that account for most of the vari-
ance, and discarding all others.

Figure 5 illustrates PCA, where the principal axes are
aligned with the most variation in the data. In this 2D
case, Principal Axis 1 accounts for more of the variation,

and dimensionality reduction can be obtained by project-
ing the 2D original data onto the first principal axis,
thereby obtaining 1D data that best represent the origi-
nal data.

In summary, PCA is equivalent to walking around the
data to see from which angle one gets the best view. The
rotation of the axes is done in such a way that the new
axes are aligned with the directions of maximum variance,
which are the directions of eigenvectors of the covariance
matrix. Implementation details can be found in the article
on PRINCIPAL COMPONENT ANALYSIS.

One minor problem exists with PCA, however: Al-
though it provides the best representation of the data in
a lower dimensional space, no guarantee exists that the
classes in the transformed data are better separated than
they are in the original data, which is because PCA does
not take class information into consideration. Ensuring
that the classes are best separated in the transformed
space is better handled by the linear discriminant analysis
(LDA).

3.3.2. Linear Discriminant Analysis (LDA). The goal of
LDA (or Fisher Linear Discriminant) is to find a transfor-
mation such that the intercluster distances between the
classes are maximized and intracluster distances within a
given class are minimized in the transformed lower di-
mensional space. These distances are measured using be-
tween and within scatter matrix, respectively, as described
below.

Consider a multiclass classification problem and let C
be the number of classes. For the ith class, let fxig be the
set of patterns in this class, mi be the mean of vectors
x 2 fxig, and ni be the number of patterns in fxig. Letm be
the mean of all patterns in all C classes. Then, the within
scatter matrix SW and between scatter matrix SB are de-
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Figure 5. Principal axes are along the eigenvectors of the co-
variance matrix of the data.
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fined as follows (1):

SW ¼
XC
i¼1

X
x2Xi

ðx�miÞ � ðx�miÞ
T

SB ¼
XC
i¼ 1

niðm�miÞ � ðm�miÞ
T ;

ð4Þ

where T denotes the transpose operator. The transforma-
tion, which is also the projection from the original feature
space onto a lower dimensional feature space, can be ex-
pressed as

y¼WT
� x; ð5Þ

where the column vector y is the feature vector in the
projected space corresponding to pattern x. The optimum
matrixW is obtained by maximizing the criterion function

JðWÞ¼SBF=SWF ; ð6Þ

where SBF and SWF are the corresponding scatter matrices
in the (feature) projection space. It can be shown that SBF

and SWF can be written as

SBF ¼WTSBW

SWF ¼WTSWW:
ð7Þ

Therefore, JðWÞ can be represented in terms of the scatter
matrices of the original patterns

JðWÞ¼
WTSBW

WTSWW
: ð8Þ

JðWÞ is a vector valued function, and the determinant of
this function can be used as a scalar measure of JðWÞ. The
columns of W that maximize the determinant of JðWÞ are
then the eigenvectors that correspond to the largest eigen-

values in the generalized eigenvalue equation:

SBwi ¼ liSWwi: ð9Þ

For nonsingular SW, Equation 9 can be written as

S�1
W SBwi ¼ liwi: ð10Þ

From Equation 10, we can directly compute the eigenval-
ues li and the eigenvectors wi, which then constitute the
columns of the W matrix.

Figure 6 illustrates the transformation of axes obtained
by LDA, which takes the class information into consider-
ation. LDA is not without its own limitations, however. A
close look at the rank properties of the scatter matrices
show that regardless of the dimensionality of the original
pattern, LDA transforms a pattern vector onto a feature
vector, whose dimension can be at most C-1, where C is the
number of classes. This restriction is serious because, for
problems with high dimensionality where most of the fea-
tures do in fact carry meaningful information, a reduction
to C-1 dimensions may cause loss of important informa-
tion. Furthermore, the approach implicitly assumes that
the class distributions are unimodal (such as Gaussian). If
the original distributions are multimodal or highly over-
lapping, LDA becomes ineffective. In general, if the dis-
criminatory information lies within different means (that
is, centers of classes are sufficiently far away from each
other), the LDA technique works well. If the discrimina-
tory information lies within the variances, than PCA
works better then the LDA.

A variation of LDA, referred to as nonparametric disc-
riminant analysis (3,4) removes the unimodal assumption
as well as the restriction of projection to a C-1 dimensional
space, which is achieved by redefining the between-class
matrix, making it a full rank matrix.

SB ¼
1

N

XC
i¼ 1

XC
j¼ 1

X
x2Xi

wijxðx�mijxÞ � ðx�mijxÞ
T ; ð11Þ

where N is the total number of instances, mijx represents

Poor choice of projection direction LDA: Good choice of projection direction

Figure 6. Linear discriminant analysis.
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the mean of xi ’s k-nearest neighbors from class oj and wijx

represents the weight of the feature vector x from class oi

to class oj

wijx ¼
minðdistðxi

KNNÞ;distðx
j
KNNÞÞ

distðxi
KNNÞþdistðxj

KNNÞ
; ð12Þ

with distðxi
KNNÞ being the Euclidean distance from x to its

k-nearest neighbors in class oi. In general, if a class oi

instance is far away in the feature space from the cluster
of class oj instances, wijx is a small quantity. If, however,
an instance of class oi is close to the boundary of class oj

instances, then wijx is a large quantity. The rest of the
analysis is identical to that of regular LDA, where the
generalized eigenvalue equation is solved to obtain the
transformation matrix W. Those columns of W represent-
ing the eigenvectors of the largest eigenvalues are then
retained and the remaining are discarded to achieve the
desired dimensionality reduction.

3.3.3. Other Feature Extraction Techniques. Although
PCA and LDA are very commonly used, they are not nec-
essarily the best ones for all applications. In fact, depend-
ing on the application, the better discriminating
information may reside in the spectral domain for which
a Fourier-based transformation DISCRETE/FAST FOURIER

TRANSFORM may be more appropriate. For NONSTATIONARY

SIGNAL (such as ECG, EEG) a WAVELET-based time-fre-
quency representation may be the better feature extrac-
tion technique (5). In such cases, the dimensionality
reduction is obtained by discarding the transformation
coefficients that are smaller than a threshold, assuming
that those coefficients do not carry much information.

We should add that some sources treat the transfor-
mation-based dimensionality reduction techniques as a
special case of feature selection, as the end result is the
selection of a fewer number of features. These techniques,
when considered as feature selection techniques, are re-
ferred to as filtering-based feature selection (as opposed to
wrapper-based feature selection as described in the next
section), as they filter out irrelevant features.

3.4. Feature Selection

In feature selection, this author specifically means selec-
tion of m features that provide the most discriminatory
information, out of a possible d features, where mod. In
other words, by feature selection, this author refer, to se-
lecting a subset of features from a set of features that have
already been identified by a preceding feature extraction
algorithm. The main question to answer under this setting
is then ‘‘which subset of features provide the most dis-
criminatory information?’’

A criterion function is used to assess the discriminatory
performance of the features, and a common choice for this
function is the performance of a subsequent classifier
trained on the given set of features. In essence, we are
looking for a subset of features that leads to the best gen-
eralization performance of the classifier when trained on
this subset. It should be noted, of course, the best subset

then inevitably becomes a function of the classifier chosen.
For example, the best subset of features for a neural net-
work may be different than the one for a decision tree type
classifier. The feature selection is therefore said to be
wrapped around the classifier chosen, and, hence, such
feature selection approaches are referred to as wrapper
approaches (6).

There is, of course, a conceptually trivial solution to
this problem: evaluate every subset of features by training
a classifier with each such subset, observing its general-
ization performance, and then selecting the subset that
provides the best performance. Such an exhaustive search,
as conceptually simple as it may be, is prohibitively ex-
pensive (computation wise) even for a relatively small
number of features. This is because, the number of subsets
of features to be evaluated grows combinatorially as the
number of features increase. For a fixed size of d and m,
the number of subsets of features is
Cðd;mÞ¼d!=m!ðd�mÞ!. If, on the other hand, we are not
just interested in a subset of features with cardinality m,
but rather a subset whose cardinality is no larger than m,
then the total number of subsets to be evaluated becomesPm

i¼ 1 Cðd; iÞ. Just for illustrative purposes, if we are inter-
ested to find the best set of features (of any cardinality) out
of 12 features, 4095 subsets of features need to be evalu-
ated. Or, if we are interested in finding the best subset
with 10 features or less, out of 20 features, we would have
to evaluate 184,756 subsets of features. It is not unusual
for practical problems to have hundreds, if not thousands,
of features.

Of course, more efficient search algorithms exists that
avoid the full exhaustive search, such as the well-estab-
lished depth-first search, breath-first search, branch and
bound search, as well as hill climb search; however, each
has it own limitations. For example, the branch and bound
algorithm avoids the exhaustive search by searching sub-
spaces and computing upper and lower bounds on the so-
lutions obtained in these subspaces. The algorithm keeps
track of the performance of the best solution found thus
far, and if the performance of another solution is worse
than the current best, the subspaces of this solution are
discarded from future search. This of course, makes sense
if and only if the criterion function used to evaluate the
performance is monotonic on the feature subsets, that is,
the performance of any feature subset must improve with
the addition of features. As discussed earlier, this is clearly
not the case in classification problems, as addition of ir-
relevant features are guaranteed to cause performance
degradation.

Other search algorithms include sequential forward
and backward search (also referred to as hill-climbing)
(7). Forward search starts with no features and evaluates
every single feature, one at a time, and finds the best sin-
gle feature. This feature is then included as part of the
optimal feature subset. Then, keeping this one feature, all
other features are added, again one at a time, to form a
two-feature subset. The best two-feature subset is re-
tained and the search continues by adding one feature
at a time to the best subset found thus far. The search
terminates when addition of a new feature no longer im-
proves performance. The backward search works much

PATTERN RECOGNITION 7



the same, but in reverse order: The search starts with all
features and then one feature is removed at a time until
removing features no longer improves performance.

Figure 7 illustrates the forward-search-based hill climb
on a sample feature set of cardinality 12. Each ordered 12-
tuple indicates which features are included or not (indi-
cated by ‘‘1’’ or ‘‘0,’’ respectively) in that feature subset.
First row shows the root level where no features are yet
included in the search. Each feature is evaluated one at a
time (twelfth total evaluations). Assume that the second
feature provides the best performance. Then, all two-fea-
ture combinations including the second feature are eval-
uated (11 such evaluations). Assume that second and 12th
features together provide the best performance, which is
better than the performance of the second feature alone.
Then, keeping these two features, one more feature is
added and the procedure continues until adding a feature
no longer improves the performance from the previous it-
eration.

Forward and backward searches are significantly more
cost efficient than the exhaustive search, as at each stage
the number of possible combinations that need to be eval-
uated decreases by one. Therefore, the total number of
feature subsets that must be evaluated is

Nþ ðNþ 1Þþ ðNþ 2Þ þ � � � þ ðN � ðN � 1ÞÞ

¼
NðN � 1ÞÞ

2
;

ð13Þ

where N is the total number of features. In comparison to
4095 exhaustive search evaluations, hill climb requires
only 66 for the 12-feature example mentioned above. How-
ever, computational efficiency comes at the cost of opti-
mality: Hill climb is suboptimal, as the optimal feature
subset that provides the best performance need not con-
tain the single best feature obtained earlier.

Despite their suboptimality, these search algorithms
are often employed if (1) the total number of features is
significantly large, and (2) the features are uncorrelated.
We would like to emphasize the second condition: Wrap-

per-based feature selection algorithms can only be used if
the individual features are uncorrelated and, better yet, if
they are independent of each other. Such approaches can-
not be used for time-series-based features, such as ECG
signals, where one feature is clearly and strongly corre-
lated with the features that come before and after itself.

4. MODEL SELECTION AND TRAINING

4.1. Setting the Problem as a Function Approximation

Only after acquiring and preprocessing adequate and rep-
resentative data and extracting and selecting the most
informative features is one finally ready to select a clas-
sifier and its corresponding training algorithm. As men-
tioned earlier, one can think of the classification as a
function approximation problem: find a function that
maps a d-dimensional input to appropriately encoded
class information (both inputs and outputs must be en-
coded, unless they are already of numerical nature). Once
the classification is cast as a function approximation prob-
lem, a variety of mathematical tools, such as optimization
algorithms, can be used. Some of the more common ones
are described below. Although most common pattern rec-
ognition algorithms are categorized as statistical ap-
proaches vs. neural network type approaches, it is
possible to show that they are infact closely related and
even a one-to-one match between certain statistical ap-
proaches and their corresponding neural network equiva-
lents can be established.

4.2. Statistical Pattern Recognition

4.2.1. Bayes Classifier. In statistical approaches, data
points are assumed to be drawn from a probability distri-
bution, where each pattern has a certain probability of
belonging to a class, determined by its class conditioned
probability distribution. In order to build a classifier, these
distributions must either be known ahead of time or must
be learned from the data. The problem is cast as follows: A
given d-dimensionalx¼ ðx1; . . . ; xdÞ needs to be assigned to

0,0,0,0,0,0,0,0,0,0,0,0

1,0,0,0,0,0,0,0,0,0,0,0 0,0,0,0,0,0,0,0,0,0,0,10,1,0,0,0,0,0,0,0,0,0,0 …

1,1,0,0,0,0,0,0,0,0,0,0 0,1,0,0,0,0,0,0,0,0,0,10,1,1,0,0,0,0,0,0,0,0,0

1,1,0,0,0,0,0,0,0,0,0,1 0,1,0,0,0,0,0,0,0,0,1,10,1,1,0,0,0,0,0,0,0,0,1

...

2nd feature gives
best performance

2nd and 12th features
give best performance

1st, 2nd and 12th features
give best performance

Search continues until the best feature in the current row 
is not better than that of the previous row.

12 combinations
to test

11 combinations
to test

10 combinations
to test

Root level: No feature is
included in the solution

…

…

Figure 7. Forward search hill climb.
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one of c classes o1; . . . ;oc. The feature vector x that be-
longs to class oj is considered as an observation drawn
randomly from a probability distribution conditioned on
class oj, PðxjojÞ. This distribution is called the likelihood,
the (conditional) probability of observing a feature value of
x, given that the correct class is oj. All things being equal,
the category with higher class conditional probability is
more ‘‘likely’’ to be the correct class. All things may not
always be equal, however, as certain classes may be in-
herently more likely. The likelihood is therefore converted
into a posterior probability PðojjxÞ, the (conditional) prob-
ability of correct class being oj, given that feature value x
has been observed. The conversion is done using the well-
known Bayes theorem that takes the prior likelihood of
each class into consideration:

PðojjxÞ¼
Pðx \ ojÞ

PðxÞ
¼

PðxjojÞ � PðojÞPC
k¼ 1

PðxjokÞ � PðokÞ

; ð14Þ

where PðojÞ is the prior probability, the previously known
probability of correct class being class oj (without regard-
ing the observed feature vector), and PðxÞ is the evidence,
the total probability of observing the feature vector x. The
prior probability is usually known from prior experience.
For example, referring to our original example, if histor-
ical data indicates that 20% of all people over the age of 60
have had two or more heart attacks, regardless of weight
and blood pressure, the prior probability for this class is
0.2. If such prior experience is not available, it can either
be estimated from the ratio of training data patients that
fall into this category, or if that is not reliable (because of
small training data), it can be taken as equal for all
classes.

The posterior probability is calculated for each class,
given x, and the final classification then assigns x to the
class for which the posterior probability is largest, that is,
oi is chosen if PðoijxÞ > PðojjxÞ, 8i, j¼ 1; . . . ; c. It should be
noted that the evidence is the same for all classes, and
hence its value is inconsequential for the final classifica-
tion. A classifier constructed in this manner is usually re-
ferred to as a Bayes classifier or Bayes decision rule, and
can be shown to be the optimal classifier, with smallest
achievable error, in the statistical sense.

A more general form of the Bayes classifier considers
the fact that not all errors are equally costly, and hence
tries to minimize the expected risk RðaijxÞ, the expected
loss for taking action ai. Whereas taking action ai is usu-
ally considered as choosing class oi, refusing to make a
decision can also be an action, allowing the classifier not to
make a decision if the expected risk of doing so is smaller
than that of choosing any of the classes. The expected risk
can be calculated as

RðaijxÞ¼
Xc
j¼ 1

lðaijojÞ � PðojjxÞ; ð15Þ

where lðaijojÞ is the loss incurred for taking action ai when
the correct class is oj. If one associates action ai as select-
ing oi, and if all errors are equally costly the zero-one loss

is obtained

lðaijojÞ¼
0; if i¼ j

1; if iOj:

(
ð16Þ

This loss function assigns no loss to correct classification
and assigns a loss of 1 to misclassification. The risk cor-
responding to this loss function is then

RðaijxÞ¼
X
jOi
j¼ 1;...;c

PðojjxÞ¼ 1�PðoijxÞ; ð17Þ

proving that the class that maximizes the posterior prob-
ability minimizes the expected risk.

Out of the three terms in the optimal Bayes decision
rule, the evidence is unnecessary, the prior probability can
be easily estimated, but we have not mentioned how to
obtain the key third term, the likelihood. Yet, it is this
critical likelihood term whose estimation is usually very
difficult, particularly for high dimensional data, rendering
Bayes classifier impractical for most applications of prac-
tical interest. One cannot discard the Bayes classifier out-
right, however, as several ways exist in which it can still
be used: (1) If the likelihood is known, it is the optimal
classifier; (2) if the form of the likelihood function is
known (e.g., Gaussian), but its parameters are unknown,
they can be estimated using MAXIMUMLIKELIHOODESTIMATION

(MLE); (3) even the form of the likelihood function can be
estimated from the training data, for example, by using k-
nearest neighbor approach (discussed below) or by using
Parzen windows (1), which computes the superposition of
(usually Gaussian) kernels, each of which are centered on
available training data points—however, this approach
becomes computationally expensive as dimensionality in-
creases; and (4) the Bayes classifier can be used as a
benchmark against the performance of new classifiers by
using artificially generated data whose distributions are
known.

4.2.2. Naı̈ve Bayes Classifiers. As mentioned above, the
main disadvantage of the Bayes classifier is the difficulty
in estimating the likelihood (class-conditional) probabili-
ties, particularly for high dimensional data because of the
curse of dimensionality. There is highly practical solution
to this problem, however, and that is to assume class-con-
ditional independence of the features:

PðxjoiÞ¼
Yd
j¼ 1

PðxðjÞjoiÞ; ð18Þ

which yields the so-called Naı̈ve Bayes classifier. Equation
18 basically requires that the jth feature of instance x,
denoted as x(j), is independent of all other features, given
the class information. It should be noted that this is not as
nearly restrictive as assuming full independence, that is,

PðxÞ¼
Yd
j¼ 1

PðxðjÞÞ: ð19Þ
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The classification rule corresponding to the Naı̈ve Bayes
classifier is then to compute the discriminant function
representing posterior probabilities as

giðxÞ¼PðoiÞ
Yd
j¼ 1

PðxðjÞjoiÞ ð20Þ

for each class i, and then choosing the class for which the
discriminant function giðxÞ is largest. The main advantage
of this approach is that it only requires univariate densi-
ties pðxðjÞjoiÞ to be computed, which are much easier to
compute than the multivariate densities pðxjoiÞ. In prac-
tice, Naı̈ve Bayes has been shown to provide respectable
performance, comparable with that of neural networks,
even under mild violations of the independence assump-
tions.

4.2.3. k-Nearest Neighbor (kNN) Classifier. Although
the kNN can be used as a nonparametric density estima-
tion algorithm (see NEAREST NEIGHBOR RULES), it is more
commonly used as a classification tool. As such, it is one of
the most commonly used algorithms, because it is very
intuitive, simple to implement, and yet provides remark-
ably good performance even for demanding applications.
Simply put, the kNN takes a test instance x, finds its k-
nearest neighbors in the training data, and assigns x to
the class occurring most often among those k neighbors.
The entire algorithm can be summarized as follows:

* Out of N training vectors, identify the k-nearest
neighbors (based on some distance metric, such as
Euclidean) of x irrespective of the class label. Choose
an odd (or prime) k.

* Identify the number of samples kj that belongs to
class oj such that

P
j kj ¼ k.

* Assign x to the class with the maximum number of kj
samples.

Figure 8 illustrates this procedure for k¼ 11. According
to the kNN rule, the test instance indicated by the plus
sign would be labeled as class-3 (represented by circles
K), as out of its 11 nearest neighbors, class-3 instances
occur most often in the training data [six instances, as
opposed to two from class-2 ðmÞ, three from class-4 (%),
and none from class-1 (’)]. Similarly, the test instance
indicated by the diamond shape ~ would be labeled as
class-1, because its 11 nearest neighbors have seven in-
stances from class-1 and only four instances from class-4
(none from other classes) in the training data. It should be
noted that the choice of k as an odd number is not by ac-
cident. For two-class problems, it is often chosen as an odd
number, and for c-class problems, it is usually chosen as a
number that is not divisible by c to prevent potential ties.

The limiting case of kNN is to chose k¼ 1, essentially
turning the classification algorithm to one that assigns the
test instance to the class of its NEAREST NEIGHBOR in the
training data. Choosing a large k has the advantage of
creating smooth decision boundaries. However, it also has
higher computational complexity, but more importantly,

loses local information because of averaging caused by
further away instances being taken into account in the
classification.

Despite its simple structure, the kNN is a formidable
competitor to other classification algorithms. In fact, it can
be easily shown that when sufficiently dense data exists,
its performance approaches to that of the optimal Bayes
classifier. Specifically, in the large sample limit, the error
of the 1-NN classifier is at worst twice the error of the op-
timal Bayes classifier.

The kNN does not really do much of any learning. In
fact, it does no processing until a request to classify an
unknown instance is made. It simply compares the un-
known data instance with those that are in the training
data, for which it must have access to the entire database.
Therefore, this approach is also called lazy learning or
memory-based learning, which is in contrast to that of
‘‘eager’’ learning algorithms, such as neural networks,
which do in fact learn the decision boundary before it is
asked to classify an unknown instance. In eager learning
algorithms, the training data can be discarded after the
training: Once the classifier model has been generated, all
information contained in the training data is then con-
densed and stored as model parameters, such as the neu-
ral network weights. Lazy algorithms have little or no
computational cost of training, but more computational
cost during the testing compared with eager learners.

4.3. Neural Networks

Among countless number of neural network structures,
There are two that are used more often than all others: the
multilayer perceptron (MLP) and the radial basis function
(RBF). These networks have been extensively studied,
empirically tested on a broad spectrum of applications,
and hence their properties are now well known. Further-
more, these two types of networks have proven to be uni-
versal approximators (8–11), a term referring to the ability
of these networks to approximate any decision boundary
of arbitrary dimensionality and arbitrary complexity with
arbitrary precision, given adequate amount of data and
proper selection of their architectural and training pa-
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Figure 8. kNN classification.
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rameters. These two types of networks are explained in
detail in this article.

4.3.1. Neuronal Model and the Multilayer Percept-
rorn. The artificial neural networks (ANNs), or simply
neural networks, are designed to mimic the decision-mak-
ing ability of the brain, and hence their structure resem-
bles that of the nervous system, albeit very crudely,
featuring a massively interconnected set of elements. In
its most basic form, a single element of the nervous sys-
tem, a neuron, consists of four basic parts, as schemati-
cally illustrated in Fig. 9: the dendrites that receive
information from other neurons, the cell body (the soma)
that contains the nucleus and processes the information
received by the neuron, the axon that is used to transmit
the processed information away from the soma and toward
its intended destination, and the synaptic terminals that
relay this information to/from the dendrites of consecutive
neurons, the brain, or the intended sensory/motor organ.

The neuron, modeled as the unit shown in Fig. 10, is
typically called a node. It features a set of inputs and a
weight for each input representing the information arriv-
ing at the dendrites, a processing unit representing the
cell body and an output that connects to other nodes (or
provides the output) representing the synaptic terminals.
The weights, positive or negative, represent the excitatory
or inhibitory nature of neuronal activation, respectively.
The axon is implicitly represented by the physical layout
of the neural network.

It is noted that for a d-dimensional feature vector, the
node usually has dþ1 inputs to the node often exist,
where the 0th input is indicated as x0 with the constant
value of 1, and its associated weight w0. This input serves
as the bias of the node. The output of the node is calculated
as the weighted sum of its inputs, called the net sum, or
simply net, passed through the activation function f:

net¼
Xd
i¼ 0

wjixi ¼x �wT þw0

y¼ f ðnetÞ:

ð21Þ

Note that the net sum creates a linear decision boundary,
x �wT þw0, which is then modified by the activation func-
tion. Popular choices for the activation function f include

(1) The thresholding function

f ðnetÞ¼

1; if net � 0

0; otherwise

8<
: or

f ðnetÞ¼

1; if net � 0

�1; otherwise:

8<
:

ð22Þ

When used with this activation function, the node
is also known as the perceptron.

(2) The identity (linear) function

f ðnetÞ¼net: ð23Þ

(3) The logistic (sigmoid) function

f ðnetÞ¼
1

1þ e�b�net : ð24Þ

(4) The hyperbolic tangent (sigmoid) function

f ðnetÞ¼ tanhðbnetÞ¼
2

1þ e�b�net � 1: ð25Þ

The thresholding function, the identity function, and
the logistic sigmoid function are depicted in Figs. 11a 11b,

…
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Figure 10. The node model of a neuron.
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Figure 9. Schematic illustration of the neuron.

PATTERN RECOGNITION 11



and 11c, respectively (the shape of the hyperbolic tangent
function looks similar to that of the logistic sigmoid, ex-
cept the logistic function takes values between 0 and 1,
whereas the range of the hyperbolic tangent is between
� 1 and 1). The b parameter in the sigmoidal functions
controls the sharpness of the function transition at zero,
and both functions approach to thresholding function as b
approaches 1, and to a linear function as b approaches 0.

In the case of the thresholding function, the node sim-
ply makes a hard decision to fire (an action potential) or
not, depending on whether it has a net excitatory or in-
hibitory weighted input. In the case of the identity func-
tion, the node does no processing and relays its input to its
output, and in the case of the sigmoid function, it provides
a continuous output in the range of ½0 1� as a soft decision
on whether to fire or not. Rosenblatt, who has coined the
term perceptron, has shown that perceptron can learn any
linear decision boundary through a simple learning al go-
rithm, where the weights are randomly initialized and
then iteratively updated as

wðtþ 1Þ¼wðtÞþDwðtÞ ) Dw¼ Zeixi ð26Þ

for each xi that is misclassified by the algorithm in the
previous iteration, where Z is the so-called learning rate
and ei is the error of the perceptron for input xi. However,
if the classes are not linearly separable, than the algo-
rithm loops infinitely without convergence on a solution.
As most problems have nonlinear decision boundaries, the
single perceptron is of limited use.

Although a single perceptron may not be of much prac-
tical use, appropriate combinations of them can be quite
powerful and approximate an arbitrarily complex nonlin-
ear decision boundary. Arguably the most popular of clas-
sifiers constructed in such a fashion is the ubiquitous
multilayer perceptron (MLP). The structure of the MLP is
designed to mimic that of the nervous system: a large
number of neurons connected together, and the informa-
tion flows from one neuron to others in a cascade-like
structure until it reaches its intended destination (Fig.
12).

Figure 13 provides a more detailed representation of
the MLP structure on which we identify many architec-
tural properties of this network. An MLP is a feed-forward
type neural network, indicating that the information flows
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in one direction from the input toward the output (as op-
posed to recurrent networks that have feedback loops). The
first layer, also called the input layer, uses nodes with lin-
ear activation functions, where each node has a single in-
put corresponding to one of the features of the input
vector. Therefore, the input layer consists of d nodes, for
a d-dimensional feature vector (an additional input node
with a constant value of 1 is also routinely added to serve
as the bias term), As a result of the linear activation func-
tions, the input layer does no processing apart from pre-
senting the data to the next layer, called the hidden layer.
An MLP may have one or more hidden layers; however, it
can be shown that any decision boundary function of ar-
bitrary dimensionality and arbitrary complexity can be
realized with a single hidden layer MLP. Each input node

is fully connected to every other node in the following
layer through the set of weights Wji. The hidden layer
nodes use a nonlinear activation function, typically a si-
gmoid function. The outputs of the hidden layer nodes are
then fully connected either to the next hidden layer’s
nodes, or more commonly to the output layer nodes
through another set of weights, Wkj. The output layer
nodes, of which one exists for each class, also use a sigmo-
idal activation function. The class labels of the training
data are encoded using c binary digits (e.g., class-3 in a 5-
class problem is represented with ½0 0 1 0 0�, whereas
class-5 is represented as ½0 0 0 0 1�). The logistic function
forces each output to be between 0 and 1. The value for
each output is then interpreted as the support given by the
MLP to the corresponding class. In fact, if a sufficiently
dense training dataset is available, if the MLP architec-
ture is chosen appropriately to learn the underlying data
distribution, and if the outputs are normalized to add up
to 1, then individual outputs approximate the posterior
probability of the corresponding class. The softmax rule is
typically used for normalizations (1,9): representing the
actual classifier output corresponding to the kth class as
zkðxÞ, and the normalized values as z0kðxÞ, approximated
posterior probabilities PðokjxÞ can be obtained as

PðokjxÞ � z0kðxÞ¼
ezkðxÞPC
c¼ 1 e

zcðxÞ
)
XC
k¼ 1

z0kðxÞ¼ 1: ð27Þ

The decision is therefore chosen as the class indicated by
the output node that yields the largest value for the given
input (that is, choosing the class with largest posterior
probability).

Although the number of nodes for the input and output
layers are fixed (number of features and classes, respec-
tively), the number of nodes for the hidden layer is a free
parameter of the algorithm. In general, the predictive
power of the MLP—its ability to approximate complex de-
cision boundaries—increases with the number of hidden
layer nodes, however, so does its chance of overfitting the
data, not to mention its memory and computational bur-
den. Therefore, the least number of nodes that provide a
desirable performance should be used (per Ockham’s ra-
zor).

The goal of the MLP is to adjust its weights so that a
cost function calculated as the squared error on labeled
training data is minimized. This is achieved by using an
optimization algorithm, typically one of several gradient-
descent-based approaches, where the algorithm tries to
find the global minimum of the so-called quadratic error
surface defined by the cost function

JðwÞ¼
1

2

XN
n¼ 1

Xc
k¼ 1

ðtk � zkÞ
2; ð28Þ

wherew represents the entire set of weights of the MLP,N
is the number of training data instances, c is the number
of classes, tk is the target (correct) output for the kth out-
put node, and zk is the actual output of the kth output
node. The algorithm by which the weights are iteratively

Input Information

Output
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Input 

Output 
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(b)

Figure 12. (a) The MLP structure mimicking (b) the simplified
structure of the nervous system.
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learned is called the BACKPROPAGATION LEARNING RULE where
the weight update searches for the minimum of the error
surface along the direction of the negative gradient of the
error:

wðtþ 1Þ¼wðtÞþDwðtÞ ) Dw¼ � Z
@JðwÞ

@w
: ð29Þ

The careful reader will immediately notice that the cost
function in Equation 28 does not appear to be a function of
the weights w. However, the cost function is in fact an
implicit function of the weights, because the values of the
output nodes depend on all network weights. The algo-
rithm begins with random initialization of all weights, and
then calculates the weight update rule for the output
weights first. As the actual outputs as well as the desired
target outputs are available for the output layer, it can be
easily shown to yield

Dwkj ¼ Z � dk � yj ¼ Zðtk � zkÞf
0ðnetkÞyj; ð30Þ

where the selection of logistic sigmoid as the activation
function yields the convenient

f 0ðnetkÞ¼ f ðnetkÞ½1� f ðnetkÞ� ð31Þ

as the derivative of the activation function, and where

dkðtk � zkÞf
0ðnetkÞ ð32Þ

is called the sensitivity of the kth output node.
Representing J as a function of input layer weights is a

little trickier, because the desired outputs of the hidden
layer nodes are not known. The trick itself is not a difficult
one, however, and involves backpropagating the error, that
is, representing the error at the output as a function of the
input to hidden layer weights through a series of chain

rules, yielding

Dwji ¼ � Z
@J

@wji
¼ Z

Xc
k¼ 1

dkwkj

" #
f 0ðnetjÞxi

¼ Z � dj � xi;

ð33Þ

where

dj ¼
Xc
k¼ 1

dkwkj

" #
f 0ðnetjÞ ð34Þ

is called the sensitivity of the jth hidden layer node.
Successful implementation of the MLP requires suit-

able and appropriate choices of its many parameters.
These parameters include the learning rate Z, the num-
ber of hidden layer nodes H, the error goal E (the value of
the cost function below which we consider the network as
trained), the activation function, the way in which the
weights are initialized, and so on. Although no hard rules
exist for choosing any of these parameters, the follows
guidelines are often recommended.

4.3.1.1. Learning Rate. The learning rate represents
the size of each iterative step taken in search of the min-
imum error. The learning rate, in theory, only affects the
convergence time. However, in practice, too large a value
of learning rate can also result in system divergence, as
the globally optimum solution is seldom found. A too small
choice of Z results in long training time, whereas a too
large choice can cause the algorithm to take too big steps
and miss the minimum of the error surface. Typical values
of Z lie in the ½0 1� range.

4.3.1.2. Number of Hidden Layer Nodes H. As men-
tioned earlier, H defines the expressive power of the net-
work, and larger H results in a network that can solve
more complicated problems. However, excessive number of
hidden nodes causes overfitting, the phenomenon where
the training error can be made arbitrarily small, but the
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network performance on the test data remains poor. Too
few hidden nodes, however, may not be enough to solve the
more complicated problems. Typically, H is determined by
a combination of previous expertise, amount of data avail-
able, dimensionality, complexity of the problem, trial and
error, or validation on an additional training dataset. A
common rule of thumb that is often used is to choose H
such that the total number of weights remains less thenN/
10, where N is the total number of training data available.

4.3.1.3. Error Goal E. If the training data is noisy or
overlapping, reaching zero error is usually not possible.
Therefore, an error goal is set as a threshold, below which
training is terminated. Selecting E too large causes pre-
mature termination of the algorithm, whereas choosing it
too small forces the algorithm to learn the noise in the
training data. E is also selected based on prior experience,
trial and error, or validation on an additional training da-
taset, if one is available.

4.3.1.4. Choice of Activation Function and Output Encod-
ing. If the problem is one of classification, then the output
node activation function is typically chosen as a sigmoid. If
the desired output classes are binary encoded (e.g.,
½0 0 1 0 0� indicating class-3 in a 5-class problem), then lo-
gistic sigmoid is used. Plus or minus 1 can also be used to
encode the outputs (e.g., ½�1 � 1 þ 1 � 1 � 1�), in which
case the hyperbolic tangent is employed. It has been em-
pirically shown, however, that better performance may be
obtained if softer values are used instead of the asymptotic
ones, such as 0.05 instead of 0 and 7 0.95 instead of 7 1
during training. If the MLP is being used strictly for func-
tion approximation, linear activation function is used at
the output layer, although the radial basis function (dis-
cussed below) is preferred for such function approximation
problems.

4.3.1.5. Momentum. Small plateaus or local minima in
the error surface may cause backpropagation to take a
long time, or even get stuck at a local minimum, as sche-
matically illustrated in Fig. 14, for the leftmost selection of
initial weights. In order to prevent this problem, a mo-
mentum term is added, which incorporates the speed in
which the weights are learned. This term is loosely related
to the momentum in physics—a moving object keeps mov-
ing unless prevented by outside forces. The modified

weight update rule is then obtained as follows

wðtþ 1Þ¼wðtÞþ ð1� aÞDwðtÞþ aDwðt� 1Þ; ð35Þ

where a is the momentum term. For a¼ 0, the original
backpropagation is obtained: The weight update is deter-
mined purely by the gradient descent. For a¼ 1, the gra-
dient is ignored, and the update is based on the
momentum: The weight update continues along the direc-
tion in which it was moving previously. Although a is typ-
ically taken to be in ½0:9 0:95� range, an inappropriate
choice may lead to oscillations in training. The optimal
value is often problem dependent and can be determined
by trying several values and choosing the one that leads to
smallest overall error.

Figure 14 shows that the minimum error reached also
depends on the weight initialization. If, for example, the
rightmost location had been randomly selected, the gra-
dient descent would have easily located the global mini-
mum of the error surface. Although an effective use of the
momentum term reduces the dependence of the final so-
lution to the initialization of the weights, it is common
practice to train the MLP several times, with different
random initializations of the weights, and choosing the
one that leads to the smallest error.

4.3.2. Radial Basis Function (RBF) Networks. As pointed
out earlier, the classification problem can also be cast as a
function approximation problem, where the goal of the
classifier is to approximate the function that provides an
accurate mapping of the input patterns to their correct
classes. There are many applications, however, where the
problem strictly calls for a function approximation (also
called system identification), or regression, particularly
when the output to be determined is not one of several
categorical entities, but rather a number on a discrete or
continuous scale. For example, one may be interested in
estimating the severity of dementia, on a scale of 0 to 10,
from a series of electroencephalogram (EEG) measure-
ments, or estimating the cerebral blood oxygenation levels
obtained through near-infrared spectroscopy measure-
ments. Clearly, because the output is not categorical, it
is not a classification problem, but rather a function ap-
proximation: we assume that there is an unknown func-
tion that maps the features obtained from the signal to a
number that represents the sought after value, and it is
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Figure 14. Schematic illustration of the local
minima problem in gradient-descent-type opti-
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this function we wish to approximate from the given train-
ing data. It is for such function approximation applica-
tions that the RBF networks are most commonly used.

We should note that both the MLP and the RBF can be
used for either classification or function approximation
applications, as they are both universal approximators.
However, many empirical studies have shown that the
RBF networks usually perform well on function approxi-
mation problems, and MLP networks usually perform well
on classification problems. As discussed below, the struc-
ture of the RBF network makes it a natural fit for function
approximation.

Given a set of input/output pairs as training data
drawn from an unknown (to be approximated) function,
the main idea in RBF network is to place radial basis
functions, also called kernel functions, on top of each train-
ing data point, and then compute the superposition of
these functions to obtain an estimate of the unknown
function. Figure 15 illustrates the approach, where the
dotted line on the left indicates a 1D unknown function
and the stars indicate the training data obtained from this
function. A Gaussian-type radial basis function is then
placed on top of each training data point (right). The in-
puts of the training data determine the centers, whereas
their desired values determine the amplitudes of the ker-
nel functions. Superposition of these kernel functions then
provides an estimate of the unknown function.

The term radial basis functions is an appropriately
chosen one: radial refers to the symmetry of the kernel,
whereas basis functions are those functions using a linear
combination of which any other function (in the same
function space) can be represented. The RBF network au-
tomates the above described procedure using the archi-
tecture shown in Fig. 16. RBF is also a feed-forward
network, and its architecture shows great resemblance
to that of the MLP.

The main difference between the RBF and the MLP
networks is the activation function used in the hidden and
output layers. At the hidden layer, the RBF uses the radial
basis functions for activation, typically the Gaussian. The
hidden layer of the RBF is also referred to as the receptive
field layer. The output of the jth receptive field is calcu-
lated as

yj ¼jðnetj ¼ k x� uj kÞ

¼ e�
kx�ujk

s

� �2
;

ð36Þ

where j is the radial basis function; uj are the input to
receptive field weights, which also constitute the centers
of the Gaussian kernels, and are usually obtained as pro-
totypes of the training data; and s, the main free param-
eters of the algorithm, is the spread (standard deviation)
of the Gaussian kernel. The spread should be chosen ju-
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diciously: Large s values result in wider Gaussians, which
can be helpful in averaging out the noise in the data.
However, local information can also be lost because of this
averaging. Small s values, on the other hand, result in
narrow Gaussians, which help retain the local informa-
tion, however, may cause spurious peaks where training
data is not very dense, particularly if those areas have
noisy data instances.

The hidden layer units essentially compute the dis-
tance between the given input and preset centers, called
prototypes (determined by the u weights), and calculates a
support from each kernel for the given input: The support
is large from those kernels whose centers are close to the
given input, and small for others. The kth output node is
the linear combination of these supports:

zk ¼ f ðnetkÞ¼ f
XH
j¼ 1

wkjyj

 !
¼
XH
j¼ 1

wkjyj ¼y �wT ; ð37Þ

where the activation function is usually the linear func-
tion, H is the number of receptive field units, and w is the
set of weights connecting the receptive layer to the output
layer.

An RBF network can be trained in one of four ways:

4.3.2.1. Approach 1. Approach 1 is known as exact
RBF, as it guarantees correct classification of all training
data instances. It requires N hidden layer nodes, one for
each training instance. No iterative training is involved.
RBF centers ðuÞ are fixed as training data points, spread
as variance of the data, and w are obtained by solving a
set of linear equations. This approach may lead to over-
fitting.

4.3.2.2. Approach 2. In order to reduce the overfitting,
fewer fixed centers are selected at random from the train-
ing data, where HoN. Otherwise, same as Approach 1,
with no iterative training.

4.3.2.3. Approach 3. In this approach, centers are ob-
tained from unsupervised learning (clustering). Spreads
are obtained as variances of clusters, and w are obtained
through LEAST MEAN SQUARES (LMS) algorithm. Both clus-
tering and LMS algorithm are iterative, and therefore the
approach is more computationally expensive than the pre-
vious ones. However, this approach is quite robust to over-
fitting, typically providing good results. It is the most
commonly used procedure.

4.3.2.4. Approach 4. All unknowns are obtained from
gradient-based supervised learning. The most computa-
tionally expensive approach, and with the exception of
certain specialized applications, the additional computa-
tional burden do not necessarily translate into better per-
formance.

In comparing MLP and RBF, their main common de-
nominator is that they are both universal approximators.
They have several differences, however: (1) MLP gener-
ates a global approximation to the decision boundaries, as
opposed to the RBF, which generates more local approx-

imations; (2) MLP is more likely to battle with local min-
ima and flat valleys than RBF, and hence, in general, has
longer training times; (3) as MLPs generate global ap-
proximations, they excel in extrapolating, that is, classi-
fying instances that are outside of the feature space
represented by the training data. Extrapolating, however,
may mean dealing with outliers; (4) MLPs typically re-
quire fewer parameters than RBFs to approximate a given
function with the same accuracy; (5) all parameters of an
MLP are trained simultaneously, whereas RBF parame-
ters can be trained separately in an efficient hybrid man-
ner; (6) RBFs have a single hidden layer, whereas MLPs
can have multiple hidden layers; (7) the hidden neurons of
an MLP compute the inner product between an input vec-
tor and the weight vector, whereas RBFs compute the dis-
tance between the input and the radial basis function
centers; (8) the hidden layer of an RBF is nonlinear and its
output layer is usually linear, whereas all layers of an
MLP are nonlinear. This really is more of a historic pref-
erence based on empirical success that MLPs typically do
better in classification type problems and RBFs do better
in function approximation type problems.

5. PERFORMANCE EVALUATION

Once the model selection and training is completed, its
generalization performance needs to be evaluated on pre-
viously unseen data to estimate its true performance on
field data.

One of the simplest, and hence, the most popular meth-
ods for evaluating the generalization performance is to
split the entire training data into two partitions, where
the first partition is used for actual training and the sec-
ond partition is used for testing the performance of the
algorithm. The performance on this latter dataset is then
used as an estimate of the algorithm’s true (and unknown)
field performance. However, estimating the algorithm’s
future performance in this manner still presents some le-
gitimate concerns:

1. As a portion of the dataset is set aside for testing, not
all of the original data instances are available for
training. Since an adequate and representative
training data set is of paramount importance for
successful training, this approach can result in sub-
optimal performance.

2. What percent of the original data should be set aside
for testing? If a small portion is used for testing,
then the estimate of the generalization performance
may be unreliable. If a large portion of the dataset is
used for testing, less data can be used for training
leading to poor training.

3. We can also never know whether the test data that is
set aside, regardless of its size, is a representative of
the data the network will see in the future. After all,
the instances in the test dataset may have a large
distribution nearby or far away from the decision
boundary, making the test dataset too difficult or too
simple to classify, respectively.
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One approach that has been accepted to provide a rea-
sonably good estimate of the true generalization perfor-
mance uses cross validation to address the above
mentioned issues. In k-fold cross validation, the entire
available training dataset is split into k > 2 partitions,
creating k blocks of data. Of these k blocks, k� 1 are used
for training and the remaining kth block is used for test-
ing. This procedure is then repeated k times, using a dif-
ferent block for testing in each case. The k test
performances obtained are averaged, and the average
test performance is declared as the estimate of the true
generalization performance of the algorithm. The proce-
dure is illustrated in Fig. 17.

The algorithm has several important advantages. First,
all data instances are used for training as well as for test-
ing, but never at the same time, allowing full utilization of
the data. Second, as the procedure is repeated k times, the
probability of an unusually lucky or unlucky partitioning
is reduced through averaging. Third, a confidence interval
for the true generalization performance can be obtained
using a two-tailed z-test, if k > 30, or a two-tailed t-test,
otherwise.

For example, the 100�ð1� aÞ% two-sided confidence in-
terval t-test would provide

P¼P� ta=2;k�1 �
sffiffiffi
k

p ; ð38Þ

where P is the mean of k individual test performances
P1 	 Pk, s is the standard error of k individual perfor-
mance values (can be estimated by calculating the stan-
dard deviation), ta=2;k�1 is the critical value of t-
distribution for k� 1 degrees of freedom for the desired
confidence level a, and P is the range of values in which
the true generalization performance is considered to lie.

The choice of k is of course data dependent: selecting k
too large divides the data into too many partitions, allow-
ing a larger amount of data for training; however, it also
increases the confidence interval because of large varia-
tions on the test performances, as a result of testing on
very few test instances. On the other hand, choosing k too
small causes not enough partitions to be made and re-

duces the amount of data available for training. For suf-
ficiently large datasets, k is typically taken as 5 or 10;
however, for smaller datasets, k may be chosen larger to
allow a larger training data. The extreme case, where
k¼N, is also known as leave-one-out validation. In this
case, the entire data but one instance is used for each
training session, and testing solely on the remaining in-
stance, repeating the process N times. Although this
method provides the best estimate of the generalization
performance, it usually yields a wides worst confidence
interval, not to mention additional computational burden.

6. OTHER TOPICS & FUTURE DIRECTIONS

6.1. Other Common Pattern Recognition Approaches

As this chapter is meant to provide an introductory back-
ground to pattern recognition, only those topics that are
most fundamental, and only those algorithms that are
most commonly used have been described in the previous
paragraphs. The field of pattern recognition, however,
comprises of a vast number of algorithms, many of which
are specifically geared toward certain applications falling
outside the scope of this article. Nevertheless, a few addi-
tional well-established algorithms should be mentioned to
provide breadth and topical name recognition.

As a preprocessing step, a technique that has some
similarities to principal component analysis, but intended
for solving a different problem is the INDEPENDENT COMPO-

NENT ANALYSIS (ICA). Unlike PCA, which seeks to find di-
rections in feature space that best represent the data in
mean square error sense, ICA seeks to find directions
along which the data components are most independent
from each other (12). Typically used for BLIND SOURCE SEPA-

RATION applications (13), ICA attempts to decouple differ-
ent components of a composite data, which are originally
generated by different sources. Isolating electrooculogram
(caused by eye-blink artifacts) from an EEG, or isolating
fetus ECG from that of the mother’s are traditional appli-
cations for ICA.

As mentioned in the introduction, this chapter focuses
on supervised algorithms, for which the availability of a
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training data with pre-assigned class labels is assumed. If
such a training dataset is not available, unsupervised
clustering algorithms can be used (1,2). Most commonly
used examples of such algorithms include the k-means (1),
several variations of fuzzy c-means (14), vector quantiza-
tion (8,15) adaptive resonance theory (ART) networks
(16), Kohonen networks (8,15) and variations of self-orga-
nizing maps (SOMs) (15).

In supervised learning, several prominent approaches
are also commonly used, such as time-delay neural net-
works (17), recurrent networks (such as Hopfield network)
(8), neuro-fuzzy algorithms (18), ARTMAP networks (19),
learning vector quantization (8), genetic algorithms (20),
swarm intelligence (21,22), and decision-tree-based ap-
proaches (1,23), among others. Also within the realm of
supervised learning, multiple classifier (ensemble) sys-
tems and kernel-machine-based approaches (such as sup-
port vector machines) are rapidly gaining momentum,
which are discussed in more detail below as current and
developing research areas.

6.2. Current and Developing Research Areas

6.2.1. Kernel-Based Learning and Support Vector Ma-
chines. An area that has seen much recent interest is ker-
nel-based learning with particular emphasis on the
support vector machines (SVM). Introduced by Vapnik,
SVMs (also called maximum margin classifiers) try to find
the optimal decision boundary by maximizing the margin
between the boundaries of different classes (24–26), as
shown in Fig. 18. To do so, SVMs identify those instances
of each class that define the boundary of that class in the
feature space. These instances, considered to be the most
informative ones, are called the support vectors, which are
calculated through a quadratic programming-type con-
strained optimization algorithm.

Identifying margin defining instances may be easy on
the simple 2D illustrative example of Fig. 18 where the
classes are linearly separable, but SVMs really shine in
their ability to find such instances in more complex, lin-
early nonseparable high dimensional spaces. In fact, one
of the main novelties of SVMs is their ability to use a ker-
nel function to map the feature space into a higher di-
mensional space, where the classes are linearly separable,
and find the support vectors in that high dimensional
space. Furthermore, what makes SVMs even more popu-
lar is the fact that they do so without actually requiring

any calculations in the higher dimensional space, through
the procedure affectionately known as the kernel trick.
The trick is figuratively illustrated in Figs. 19a and 19b,
and on the famous XOR problem in Figs. 19c and 19d.

Using SVMs with several different computationally
less expensive optimization algorithms, implementing
the algorithm for multiclass problems are ongoing re-
search areas.

6.2.2. Mixture Models and Ensemble Learning. Another
rapidly developing area within the pattern recognition
community is the so-called ensemble systems, also known
under various names such as multiple classifier systems
(MCS), multiple expert models, or mixture models. The
idea behind ensemble systems is to employ several classi-
fiers, instead of a single classifier, to solve the particular
pattern recognition problem at hand (27). Several inter-
esting properties of ensemble systems have been estab-
lished over the last several years that have made them
quite popular. For example, Schapire has shown that us-
ing an algorithm called boosting (28), and later AdaBoost
(29), a weak learner, an algorithm that generates classifi-
ers that can merely do better than random guessing can be
turned into a strong learner that generates a classifier
that has an arbitrarily small error, with a guarantee that
the combined system will perform as good or better than
the best individual classifier that makes up the ensemble.
Several variations of such ensemble systems can be seen
in hierarchical mixture of experts (HME) (30) that use the
expectation maximization (EM) (31) algorithm for
training, or in stacked generalization (32) that uses a sec-
ond-level classifier that is trained on the outputs of the
first level classifiers. It has been well-established that
much is to be gained from combining classifiers if the clas-
sifiers are as independent or as diverse as possible. That
way, the individual weakness or instability of each classi-
fier can be effectively averaged out by the combination
process (such as voting-based approaches), which may sig-
nificantly improve the generalization performance of the
classification system. A specific area of interest within the
ensemble systems researchers involves developing effec-
tive techniques for measuring diversity among classifiers,
as well as investigating various combination schemes.

More recently, ensemble-systems-based approaches
have also been proposed for such applications as incre-
mental learning, data fusion, and confidence estimation
using the Learnþ þ algorithm (33). Incremental learning
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is defined as the ability of a classifier to learn additional
information from new data that may later become avail-
able, even if the new data introduce instances from pre-
viously unseen classes and even if the previous data are no
longer available. Learnþ þ generates an ensemble of clas-
sifiers for each dataset that becomes available, where the
individual classifiers are specifically geared toward learn-
ing the novel information presented by the new data. The
algorithm is also used for data fusion applications, where
the additional data that become available may consist of a
different set of features. Finally, as the ensemble systems
employ several classifiers, estimating the confidence of
classification system also becomes possible without neces-
sarily resorting to cross-validation techniques.

6.3. Applications

A large number of applications benefit from current and
near future research in pattern recognition. Some of these
areas are in fact very closely related to active research
areas in biomedical engineering. For example, computa-
tional neuroscience is one of the rapidly expanding areas,
where researchers try to understand more intricate de-
tails of how the nervous system really works; propose new
models of neurons and local neural circuits as well as new
learning rules based on these discoveries. Spiking neural

networks is one type of neural network that is actively
being considered for this area.

Another area related to biomedical engineering is bio-
informatics and genomics, where new and existing pattern
recognition algorithms are evaluated in gene sequence
analysis, development of artificial immune systems, and
genomic data mining. Vision and image processing, bio-
metric identification (face, fingerprint, iris scan, etc.),
handwritten character recognition, auditory data and
speech processing, speech and speaker identification,
and diagnosis of various cardiovascular and neurological
disorders based on features obtained from noninvasive
tests or bioimaging modalities are all biomedical applica-
tion-oriented areas of active research.

Among all biomedical engineering-related applications
of pattern recognition, those that involve analysis of bio-
logical signals for detection or identification of certain
pathological conditions have enjoyed the most attention.
For example, analysis of various features extracted from
the ECG to diagnose a broad spectrum of cardiovascular
disorders, including arrhythmias and heart rate variabil-
ity, have been popular areas of research. Using EEG sig-
nals to diagnose/detect various neurological conditions—
from detection of characteristic EEG waves to advanced
detection of epileptic conditions to automated early diag-
nosis of Alzheimer’s diseases—have also enjoyed signifi-
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cant attention. Analysis of respiratory signals to detect
pulmonary disorders such as apnea and hypopnea, anal-
ysis of Raman spectra for early detection of skin cancer,
analysis of aging on gait patterns, analysis of various
imaging modalities (such as MIR, PET scan, digital mam-
mogram) for automated detection of tumors or other ab-
normalities are just a few of many applications of pattern
recognition in biomedical engineering.

Of course, pattern recognition is also being actively
used in nonbiomedical applications, such as general signal
processing and telecommunications applications, robotics
and dynamic control, financial or other time series data
analysis, military and computer security applications, re-
mote sensing and oceanographic applications, geographi-
cal information systems, nondestructive evaluation,
hazardous compound identification based on chemical
sensor data, among many others.

6.4. Some Final Thoughts

Literally hundreds of pattern recognition approaches and
algorithms exist, and it is often asked whether any one of
them is consistently better than the others. A cleverly
named theorem, called the no-free lunch theorem, tells us
that no algorithm is universally superior to all others in
the absence of any additional information (34). In fact, it
can be proven that problems exist for which random
guessing will outperform any other algorithm. Although
such problems may not be of much practical interest, there
is still a lesson to be learned: The choice of the appropriate
algorithm almost invariably depends on the nature of the
problem, the distribution that provides the data for that
problem, and the prior knowledge available to the de-
signer.

6.5. For Further Reading

The nature of this chapter makes it impossible to provide a
more detailed discussion on all topics, or to provide specific
algorithms for all techniques. Therefore, the author’s goal
has been to provide a fundamental background, upon
which interested readers can build. The references cited
within the article will provide the additional depth and
breadth; however, a topic-specific list is also provided be-
low for textbook based references.

Pattern Classification (2nd edition), by Duda, Hart and
Stork (Wiley, 2000); Statistical Pattern Recognition by
Webb (Wiley, 2002), Pattern Recognition (2nd edition) by
Theodoridis and Koutroumbas (Academic Press, 2003) and
The Elements of Statistical Learning by Hastie, Tibshirani
and Friedman (Springer, 2002) cover a broad spectrum of
pattern recognition topics in considerable detail. For al-
gorithms and techniques that are specifically related to
neural networks, Neural Networks, A Comprehensive
Foundation by Haykin (Prentice Hall, 1998), Neural Net-
works for Pattern Recognition by Bishop (Oxford Univer-
sity Press, 1995), and Pattern Recognition and Neural
Networks by Ripley (Cambridge University Press, 1996)
are classic texts that provide a very comprehensive theo-
retical coverage of neural network-based approaches. For
the practitioners, Netlab by Nabney and Computer Man-
ual in Matlab to Accompany Pattern Classification by

Stork and Yom-Tov include Matlab functions for many of
the popular pattern recognition algorithms, whereas Neu-
ral and Adaptive Systems: Fundamentals through Simu-
lations by Principe, Euliano and Lefebvre (Wiley, 1999)
and Pattern Recognition, Concepts, Methods and Applica-
tions by Marques de Sa (Springer, 2001) both include a
simulation software on CD that allows the readers to sim-
ulate the algorithms discussed in their respective books.
Pattern Recognition in Medical Imaging by Meyer-Baese
(Academic Press, 2003) also covers most pattern recogni-
tion approaches along with feature extraction and signal/
image processing techniques that are particularly appli-
cable to large dimensional datasets, such as medical im-
ages. An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods by Cristianini and
Taylor (Cambridge University Press, 2000) provides an
excellent introduction to kernel-based methods, whereas
Combining Pattern Classifiers: Methods and Algorithms
by Kuncheva (Wiley, 2004) is the only text of its kind cov-
ering ensemble-based systems. For a more light-hearted
and recreational reading, Intelligent Data Analysis, an
Introduction by Berthold and Hand (Springer, 2003) and
How to Solve It: Modern Heuristics, by Michalewics and
Fogel (Springer, 2000) can be recommended. Finally, also
of interest is PRTools a set of pattern recognition functions
organized as a Matlab toolbox, available from www.prtool-
s.org.

A large number of journals, such as IEEE Transactions
in Pattern Analysis and Machine Learning, Neural Net-
works, Knowledge and Data Engineering, Fuzzy Systems,
Systems Man and Cybernetics, as well as Transactions on
Biomedical Engineering, Elsevier’s Pattern Recognition,
Neural Networks, Information Fusion, Neurocomputing
and many others publish papers on theory and applica-
tions of pattern recognition. For the most recent advances
in pattern recognition, the readers may wish to attend
some of the major conferences, such as the International
Joint Conference on Neural Networks (IJCNN), Interna-
tional Conference on Artificial Neural Networks (ICANN),
International Conference on Pattern Recognition (ICPR),
Neural Information Processing Systems Conference
(NISP), and International Workshop on Multiple Classi-
fier Systems (MCS). All of these conferences feature ses-
sions on biomedical applications, and all major biomedical
engineering conferences, such as IEEE’s Engineering in
Medicine and Biology Conference, typically feature a
healthy number of presentations on pattern recognition.
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