DETECTION

General problem of detection:

A signal $\mathrm{x}(\mathrm{t})$ is received: $\mathrm{x}(\mathrm{t})=\left\{\begin{array}{l}n(t) \\ s(t)+n(t)\end{array}, \mathrm{n}(\mathrm{t})\right.$ is the noise and $\mathrm{s}(\mathrm{t})$ is the signal and we know it precisely.
The observer must choose between two possible situations

- H_{0} : There is no signal and $x(t)$ is just noise
- H_{1} : The signal is present and $\mathrm{x}(\mathrm{t})=\mathrm{s}(\mathrm{t})+\mathrm{n}(\mathrm{t})$

Assumptions:

(1) The signal $x(t)$ is known and we want to know if it is present or not.
(2) $n(t)$ is a stochastic process with known statistics.
(3) The observer must base its decision on
a. Samples of $\mathrm{x}(\mathrm{t})$ (digital $\mathrm{x}(\mathrm{nT}))$
b. The entire $x(t)$ (analog)

We shall address the digital problem:
We assume that (a) $s(t)$ and $n(t)$ are independent
(b) The samples of $n(t)$ are uncorrelated

Objectives:

Design the optimum system:

- The system can be linear or nonlinear

Criteria:

The system must be optimum with respect to a criterion which depends on the particular problem.

Sometimes we are satisfied with a sub optimum system because it is much simpler than the optimum.

Parametric detection: if we know the p.d.f of $\mathrm{n}(\mathrm{t})$ (complete description)

Non parametric detection: if we don't have a complete description of $n(t)$.
(ex. : we only know $R_{n}[n]=\sigma_{n}^{2} \delta[n]$)
Robust detector: is called a detector, which performs within acceptable levels even if the assumption regarding noise is violated or otherwise performs equally, well in a different environment than the assumed one.

Example:

Assume that noise is Gaussian and then investigate its performance under noise with another distribution.

Errors:

Due to the presence of noise we can perform errors in our decisions
(1). Error of the first kind: Pe_{0}. It is the probability to decide that the signal is present when it is not or choose H_{1} when H_{0} is true.
(2). Error of the second kind: Pe_{1}. When the signal is present you decide that it is not or choose H_{0} when H_{1} is true.

Problem 1

Detection of a pulse (PCM or radar e.t.c)

Case A

Assumption:
a. $\quad \mathrm{s}(\mathrm{t})=\left\{\begin{array}{l}A \\ 0\end{array}\right.$
b. Probability of $\mathrm{s}(\mathrm{t})=\mathrm{A}=\mathrm{P}_{1}$
c. Probability of $s(t)=0=1-P_{1}$
d. Probability density function of $n(t)$ is known
e. We must base our decision on one sample

Criterion: Minimize the probability of error:

$$
\mathrm{Pe}=\mathrm{P}_{1} \mathrm{Pe}_{1}+\left(1-\mathrm{P}_{1}\right) \mathrm{Pe}_{0}
$$

Solution: Decision will be based on $x[n]=x_{1}$. If x_{1} is in one Range R_{1} then we decide that H_{1} is true and our problem is to find R_{1}.

$$
\mathrm{P}_{\mathrm{e} 0}=\left\{\mathrm{x}_{1} \text { is in } \mathrm{R}_{1} \text { but } \mathrm{s}(\mathrm{t}) \text { is not present }\right\}=\int_{R_{1}} f_{x_{1}}\left(x_{1} / s(t)=0\right) d x
$$

$$
P_{e 1}=\int_{1-R_{1}} f_{x_{1}}\left(x_{1} / s(t)=A\right) d x=1-\int_{R_{1}} f_{x_{1}}\left(x_{1} / s(t)=A\right) d x
$$

\Rightarrow Total Error

$$
\begin{aligned}
P_{e} & =\left(1-p_{1}\right) \int_{R_{1}} f_{x_{1}}\left(x_{1} / s(t)=0\right) d x+p_{1}\left(1-\int_{R_{1}} f_{x_{1}}\left(x_{1} / s(t)=A\right) d x\right)= \\
& =p_{1}+\int_{R_{1}}\left[\left(1-p_{1}\right) f_{x_{1}}(x / 0)-p_{1} f_{x_{1}}(x / A)\right] d x
\end{aligned}
$$

Choose R_{1} such that

$$
\begin{gathered}
\left.\left[(1-P 1) f_{x_{1}}(x / 0)\right]-P_{1} f_{x_{1}}(x / A)\right]<0 \\
l\left(x_{1}\right)=\frac{f_{x_{1}}(x / A)}{f_{x_{1}}(x / 0)}>\frac{1-P_{1}}{P_{1}}
\end{gathered}
$$

$$
l\left(x_{1}\right)=\text { Likelihood radio }
$$

Sometimes it is more convenient to take logarithms

$$
\ln l\left(x_{1}\right)>\ln \frac{1-P_{1}}{P_{1}}
$$

Comment: the worst case will be $\mathrm{Pe}=1 / 2$

Sub case A. 1

Noise is gaussian distributed with zero mean and variance σ^{2}

$$
\begin{aligned}
\frac{\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-\left(x_{1}-A\right)^{2}}{2 \sigma_{x}^{2}}}}{\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-x_{1}{ }^{2}}{2 \sigma_{x}^{2}}}} \geq \frac{1-P_{1}}{P_{1}} & \Rightarrow\left(\frac{-\left(x_{1}-A\right)^{2}+x_{1}^{2}}{2 \sigma_{x}{ }^{2}}\right) \geq \ln \frac{1-P_{1}}{P_{1}} \Rightarrow \frac{x_{1} A}{\sigma_{x}{ }^{2}}-\frac{A^{2}}{2 \sigma_{x}{ }^{2}} \geq \ln \frac{1-P_{1}}{P_{1}} \\
& \Rightarrow X_{1}>\frac{A}{2}+\frac{\sigma_{x}{ }^{2}}{A} \ln \frac{1-P_{1}}{P_{1}}=D
\end{aligned}
$$

Oоıбно́ৎ: $\operatorname{erf}(x)=\frac{1}{\sqrt{\pi}} \int_{-x}^{x} e^{-t^{2}} d t=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$

In this case probability of error is:

$$
P e=\frac{1}{2}-\frac{1}{2}\left(P_{1} \operatorname{erf} \frac{A-D}{\sqrt{2} \sigma_{x}}+\left(1-P_{1}\right) \operatorname{erf} \frac{D}{\sqrt{2} \sigma_{x}}\right)
$$

If $\mathrm{P}_{1}=1 / 2$ then we have the expected decision $\mathrm{x}_{1}>\mathrm{A} / 2$ signal is present.

Numerical example:
Computer transmits $0,1, \ldots$ Each pulse occupies T sec and we sample every T sec. $P_{1}=P_{2}=1 / 2$ choose A such that $\mathrm{Pe}=10^{-5}$.

$$
\begin{aligned}
& D=\frac{A}{2} \Rightarrow P e=\frac{1}{2}-\frac{1}{4} \cdot\left[2 \operatorname{erf} \frac{A}{2 \cdot 2}\right]=\frac{1}{2}-\frac{1}{2} \cdot\left[\operatorname{erf} \frac{A}{4}\right] \\
& \Rightarrow \operatorname{erf} \frac{A}{4}=2 \cdot\left[\frac{1}{2}-P e\right]=0.99998 \Rightarrow \frac{A}{4}=3 \Rightarrow A=12
\end{aligned}
$$

Let $\mathrm{T}=1 \mu \mathrm{~s} \Rightarrow$ on the average we are going to perform 10 errors every second!

Sub case A. 2
Assume a different distribution
Uniform distribution

$\mathrm{Pe}=0$ if $A-a>a, \mathrm{R} 1=x \geq A-a$
$A-a<a$ or $A<2 a$
$l(x)=\left\{\begin{array}{cc}0 & x<A-a \\ 1 & A-a<x<a \\ \infty & \\ \infty & a<x\end{array}\right.$

